BEFORE THE ENVIRONMENTAL APPEALS BOARD

> U.S. ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C.

ORAL ARGUMENT
\qquad
CITY OF HOMEDALE WASTEWATER : NPDES Appeal No. TREATMENT PLANT, : : 13-10
NPDES Permit No. :
ID-002042-7

Wednesday, April 30, 2014
Administrative Courtroom Room 1152
EPA East Building
1201 Constitution Avenue, N.W. Washington, D.C.

The above-entitled matter came on for hearing, pursuant to notice, at 11:00 a.m.

BEFORE:

THE HONORABLE CATHERINE R. MCCABE Environmental Appeals Judge
THE HONORABLE RANDOLPH HILL Environmental Appeals Judge
THE HONORABLE KATHIE A. STEIN Environmental Appeals Judge

APPEARANCES:
On Behalf of the Idaho Conservation
League:

```
    JUSTIN HAYES, Program Director
    TODD C. TUCCI
        of: Idaho Conservation League
            P.O. Box }84
            710 N. 6th Street
            Boise, Idaho 83701
            (208) 345-6933
            (208) 344-0344 fax
    On Behalf of the Environmental
Protection Agency Region 10:
            COURTNEY WEBER, ESQ.
    Of: U.S. Environmental Protection
            Agency
            Office of Regional Counsel
            Region l0
            1200 6th Avenue
            Suite 900 (ORC-158)
            Seattle, Washington 98101
            (206) 553-1477
            (206) 553-1762 fax
            JAMES CURTIN, ESQ.
    of: U.S. Environmental Protection
            Agency
            Office of General Counsel
            Water Law Office
            1200 Pennsylvania Avenue, N.W.
            (MC-2355A)
            Washington, D.C. 20460
            (202) 564-5482
```

 ALSO PRESENT:
 Eurika Durr, Clerk of the Board
 $$
P-R-O-C-E-E-D-I-N-G-S
$$

11:01 a.m.

MS. DURR: All rise. Environmental Appeals Board of the United States Environmental Protection Agency is now in session for oral argument in re: city of Homedale Wastewater Treatment Plant, NPDES permit number ID-002042-7, NPDES appeal number 13-10.

The Honorable Judges Randolph Hill, Catherine McCabe, Kathie Stein presiding.

Please turn off all cell phones and no recording devices allowed. Please be seated.

JUDGE MCCABE: Good morning on this rainy Washington morning. Welcome to Washington for those of you who've traveled far.

I am Catherine McCabe and on my right is Judge Randy Hill, and on my left Judge Kathie Stein.

We would like to begin with the appearance of the petitioners, but before we do that let me just explain the order that we'll go in for oral argument. Today we will have one half an hour for each party. For the petitioner, one half an hour for the petitioner may be -- you may reserve, if you like, five minutes for rebuttal. But please let us know that when you begin.

So could we have appearances of Counsel? Starting with petitioner, please. Oh, you're on the other side.

MR. HAYES: Your Honors, I'm Justin Hayes. I'm representing the Idaho Conservation League pro se.

JUDGE McCABE: Good morning, Mr. Hayes. And with you at counsel table?

MR. HAYES: This is an acquaintance of mine, a colleague, Todd Tucci, he's here for moral support and to make sure that if I fall over, he'll pick me up.

JUDGE MCCABE: Welcome.

And for EPA?
MS. WEBER: Courtney Weber on behalf of EPA Region 10.

MR. CURTIN: Jim Curtin with the Office of General Counsel.

JUDGE MCCABE: Welcome everyone. With that, we would like to begin with the petitioner, Mr. Hayes.

MR. HAYES: Your Honors, thank you for hearing in this matter.

I have asked that I reserve five minutes for rebuttal.
I'd like to start off by
introducing my organization to you. I represent the Idaho Conservation League. The Idaho Conservation League is Idaho's oldest and largest state-based conservation group. We represent about 3000 members across the state and we work on a variety of issues. Water quality is one of the most important issues that we work on though.

And this issue specifically, with
regard to water quality in the Snake River, is of tremendous importance to our membership. The Snake River is one of the most important rivers in the state of Idaho. And unfortunately, is also one of the most contaminatedrivers in the state of Idaho. So this matter is pressing to our membership, and important to be resolved correctly.

So I appreciate your intelligence in this matter.

This matter is actually quite simple. As I read the amicus that was filed and I read the $E P A^{\prime}$ s response, it struck me that it was simpler than being construed by other folks. We're really talking about up permit limit and whether or not that permit limit is consistent with the TMDL. We're not attempting to challenge statute or regulation, or challenge existing EPA court cases and precedents. We are merely trying to apply those precedents in this particular matter to this particular NPDES permit to ensure that
the one limit that we are talking about, the limit for total phosphorus, is being correctly derived and this will be applied to the Snake River to ensure compliance with the relevant TMDL

So this is a relatively narrow issue. And in this regard, we think that EPA has made a factual error.

JUDGE McCABE: Mr. Hayes, let me just ask you an initial question and then we can go on. Are you challenging only the consistency of these permit limits with the TMDL or are you also challenging whether the permit limits are adequate to meet the state's water quality standard?

MR. HAYES: I think that those are the same thing. The TMDL was created such that the attainment of the target in the TMDL would result in this attaining the water quality standards. And since this water quality limit in the permit, sorry, the permit limit is not consistent with the TMDL, it
results in a violation of the water quality standard.

JUDGE MCCABE: So are you challenging both issues then?

MR. HAYES: I guess, in that regard, I am. I'm sorry if I truncated that inappropriately. In my mind, they were connected.

JUDGE McCABE: Thank you.
MR. HAYES: So we reviewed the draft permit; we saw this issue; we commented on it; and when our comment was not resolved in a matter that we thought it addressed the underlying issue we brought this appeal.

The question here really is, does the TMDL allow for implementing waste load allocations on an averaging basis, a monthly average, a weekly average? Or in this particular instance, this unique TMDL, because of the way it is constructed, and the language that is used, and the assumptions that are part of developing it, does it really require
that the TMDL waste load allocations in this instance actually be a daily maximum? That's the rub. Is, the permanent limit which uses a monthly or weekly averaging, is it consistent with the assumptions in the TMDL?

JUDGE McCABE: So once again, let me just be clear about what you're challenging. You're challenging both the 11 pounds per day monthly average limit and you're challenging the 16.5 weekly average limit?

MR. HAYES: Yes. They do not comply with the assumptions in the TMDL, and if implemented, will result in violations of the target in the TMDL.

JUDGE HILL: So Mr. Hayes, what do you seek or, I mean, obviously, you seek a remand of the permit, but if we were to remand the permit what would the permit look like in your mind after this? Would it have a daily limit? Would the weekly limit be set at ll? Would the weekly limit be set at like $1 / 7$ of

11? I'm trying to understand kind of -- I had trouble, from your briefs, understanding what would be a satisfactory permit limit.

MR. HAYES: The simple fix is a maximum daily effluent limit of 11 pounds consistent with the target and consistent with the waste load allocations.

It is possible that you could create a monthly and a weekly limit, but because of the way that those monthly and weekly averages are created, using the technical documents, you end up creating a very stringent limit so that none of the days in the month that you're averaging result in an accedence of 11 . In that regard, I think a monthly or a weekly limit is impractical in this instance.

And that is why a maximum daily limit is the best solution. If I may --

JUDGE STEIN: Can I asked you just one question? This issue of impracticability, which I saw in your reply brief, did you raise
that particular issue in your comments on the draft permit?

MR. HAYES: I'm not sure that we used the word impractical but we articulated that a maximum daily limit was required in order to comply with the --

JUDGE STEIN: And how do you square that with other portions of the regulations that appear to require that there also be weekly averages and monthly averages? I mean, don't we need to look at all of the applicable regulations?

MR. HAYES: We do need to look at all of the applicable regulations. And I believe to be consistent with them you can turn to a non-monthly or weekly permit limit if the use of those is impractical.

However, as I said, while the simple fix is a daily maximum, it is possible to create a monthly and weekly. Although I believe that would be somewhat punitive to the city of Homedale.

JUDGE STEIN: Wouldn't EPA -- and I'm trying to figure out whose burden it is to raise this impracticability question -- but wouldn't EPA have had to have made a finding in the underlying permit proceeding of impracticability to proceed as you're asking? In other words, don't the regulations, on their face, presume that in the absence of that you should be imposing weekly and monthly Iimits?

MR. HAYES: I believe that because EPA has made a fundamental error in understanding what the TMDL calls for and the assumptions that were generated in creating the TMDL and the waste load allocations, because they errored there, they were blind to this problem.

So it would have been wonderful, from my perspective, for them to have it asserted that a maximum daily was necessary but they didn't see it because of the error that they made.

If I may, I was going to rely on the projector here but it's apparently not working so I'd like to hand out that document.

JUDGE MCCABE: For which we apologize.

MR. HAYES: That is okay.
JUDGE MCCABE: This is an historic courtroom and, unfortunately, some of the equipment is as well. And they're not --

MR. HAYES: Beautiful --
JUDGE McCABE: -- every day does it work well.

MR. HAYES: I made some copies, and I could hand them out, I would. May I approach the bench? Or is --

JUDGE McCABE: Please. Thank you. Thank you.

MR. HAYES: So I've handed out a copy of a page pulled out of the mid Snake/Succor Creek TMDL. And this describes the target. This is the whole goal; this is the point of the TMDL. The target shown to
result in attainment of water quality standards and support of designated uses in this reach is an in-stream concentration of less than or equal to .07 milligrams per liter total phosphorus, and it is applied seasonally in this regard.

This is not an average target. The target here is for total phosphorus in the river to not exceed the concentration of .07 milligrams per liter at any time --

JUDGE HILL: Can I bring your attention to page 175 of the same TMDL.

MR. HAYES: Okay.
JUDGE HILL: That document, I'm looking at table 48. And table 48, the title of the is, "In-streamtotal phosphorus average concentrations." And then it has location and that it says "May to September average concentration," and it has a Snake River below, CJ Strike Dam, and it says . 07 .

So I'm wondering how that squares with your argument that page 164 is describing
it as, essentially, an instantaneous max --
JUDGE McCABE: And I also --
JUDGE HILL: -- it seems to label
it as an average concentration.
JUDGE McCABE: I'm also wondering the language that you just cited to us, where it says instantaneous, because you just pointed us to language, on your page 164, that says this is a seasonal target. So that doesn't really say whether it's seasonal every minute, as you seem to be arguing, or seasonal at the end of the season, or seasonal on average through the season.

MR. HAYES: I appreciate that confusion. And it is not a seasonal average. The phosphorus target is only applied during a specific season.

When this TMDL was created, it was determined that the period of time in which phosphorus needed to be maintained below this threshold was May through September.

JUDGE MCCABE: Doesn't page 175,
as Judge Hill has just pointed out, say average concentration May to September? Do you have that page, Counsel? If you'd like a minute to locate it, please take your time.

MR. HAYES: If I could, that would be wonderful. Thank you.

JUDGE MCCABE: This is 10 pages after the one you were showing to us.

MR. HAYES: Thank you.
JUDGE MCCABE: So what I was suggesting is that what you showed us on page 164 seems to be ambiguous; it doesn't specify whether seasonal means every minute in the season or averaged over the season. And what Judge Hill is pointing you to on page 175 is much more explicit.

MR. HAYES: What Judge Hill is pointing to, ma'am, it is the current observed phosphorus concentrations in the river, not that targets that were sought to be achieved.

JUDGE HILL: Well, I mean, if you
look at the language before the table it says, "The allocation strategy used is equal concentration, meaning all sources must discharge a concentration of .07 milligrams are less where they enter the river." So and then, "Seasonal variation critical conditions were accounted for in this allocation. The target applies May to September in-stream seasonal concentration, for instance, at mile 49 is .07."

In other words, it kind of jumps back and forth between characterizing it as, you know, a not to be exceeded target, although it never uses those words, and an average target. But at the very least, it seems ambiguous to me.

MR. HAYES: Thank you for pointing that out.

And I will say, again, the table here is representing existing observed concentrations of phosphorus, not the target.

And I agree with you that the
notion of the equal concentration, with going to be the guiding principle, that would be very important to be implemented. That would allow them to achieve the target of not exceeding . 07 milligrams per liter in-stream. JUDGE HILL: So, let me ask you. If we disagreed, if we thought that this language implied that it was an average over the season, and it's not clear what the averaging period is from this language, but if we disagreed and thought that this was an average rather than a maximum, would that be the end of your case?

MR. HAYES: Yes, I believe that it would.

JUDGE HILL: Okay. So you're hanging your hat on that the TMDL set a not to be exceeded maximum?

MR. HAYES: I am. And I feel quite comfortable in doing so because of the plain language in the TMDL, which I referenced you on page 164.

JUDGE MCCABE: Can you please point us again to the plain language you're relying on?

MR. HAYES: Thank you. "The target shown to result in attainment of water quality standards and support of designated uses in the reach is an in-stream concentration of less than or equal to .07 milligrams per liter."

JUDGE McCABE: Does that mean constant instantaneous to you?

MR. HAYES: It does.
JUDGE MCCABE: And how do you explain the third sentence down which you've also underlined, that this target is seasonal in nature?

MR. HAYES: Because this target, it must be achieved but only during that season. This is not saying that it isn't averaged to be -- the average to be achieved during that season. It's saying that this target is only applicable during the season;
it is not a seasonal average; it is not a monthly average. The target is, do not exceed this concentration at any point in time during the season.

JUDGE HILL: Mr. Hayes, what do you do with the very first sentence of that same paragraph where it says, "The phosphorus load concentration, LC, is identified for an average flow scenario"?

MR. HAYES: That is the average flow of the river. When they needed to figure out a concentration to shoot for in their target, the concentration is obviously dependent on the flow of the river and the amount of load being discharged to the river. So in this TMDL, rightly or wrongly, they based that concentration on the average observed flow of the river.

JUDGE STEIN: Mr. Hayes, I guess what I'm trying to figure out here is, given the significance of this issue, both to this case and presumably to, you know, other
matters in the Snake River, wouldn't you have expected that there would have been greater clarity expressed in the TMDL if, in fact, your reading were correct? In other words, that it would not leave room for, at least, what my colleagues have suggested, maybe a number that could be read in more than one way.

MR. HAYES: Right. It would be wonderful if there was clarifying sentences in here saying yes or no. However, I will point out that there is an absence of sentences saying that it is an average. And I will point to a document from that Hells Canyon TMDL, which is -- sorry --

JUDGE STEIN: No problem.
MR. HAYES: This is clear language. And this is not found in the TMDL. This is found in another TMDL. This language here helps the permit writer faithfully translate the assumptions of the TMDL into a permanent limit by saying that these
phosphorus waste load allocations will be applied daily on a monthly average basis based on the design flow.

JUDGE MCCABE: So this is the TMDL waste load allocation for the next stretch downstream of the Snake River as I understand it.

MR. HAYES: That's right.
JUDGE MCCABE: So it's your understanding -- is your understanding, Mr. Hayes, that this standard would be sufficient to prevent the accedence of water quality standards for total phosphorus and the growth of algae that everyone is trying to prevent here? Would this be adequate to do that?

MR. HAYES: It was determined by the TMDL that this would be adequate for the stretch of the river that is governed by this TMDL .

MR. HAYES: Why would the next stretch upstream be any different?

MR. HAYES: I'm not actually in a
position to tell you why they are different. Although I will point out that they are very different stretches of river with dischargers of different magnitudes and quantities and qualities going into them.

I believe that it is inappropriate to lift language from one TMDL and apply it to another TMDL. Language like this is not found in the Succor Creek TMDL, the mid Snake/Succor Creek TMDL.

MR. HAYES: But if the general approach is protective for segment two of the river, why isn't the same general approach protective for segment one of the river? In the analysis that they did, the state took the flows into consideration when they set the .07 milligrams per liter target for total phosphorus.

JUDGE MCCABE: Right. The language in the Hells Canyon TMDL is unique to Hells Canyon TMDL. It is not found in the Succor Creek TMDL, and it is not found in

TMDLs on the Snake upstream.
Why it is that it was integrated into decision-making in Hells Canyon is not something that I know the answer to. Although I will point out that it is not found in other TMDLs, TMDLs that were created at the same time by the same people.

JUDGE STEIN: Weren't they created a year apart? I mean, one of these documents is dated April 2003.

MR. HAYES: Yes.
JUDGE STEIN: One is dated June 2004. So you're suggesting that there's more precision and more information in the subsequent document, but does the absence of that information in the earlier document dispose of this question?

MR. HAYES: Let me start by saying they were created concurrently. They have different finalized submittal dates, but the development of the Snake River TMDLs has been a multi-multi-year process. And there was a
lot of integration of staffing and timing.
JUDGE McCABE: Mr. Hayes, as a matter of science, is it your understanding that you need to meet a .07 milligrams per liter concentration of total phosphorus every minute of every day in order to prevent the eutrophication that they're trying to prevent in this river?

MR. HAYES: It was determined through the TMDL that they needed to meet that concentration or be below that concentration during the applicable season.

JUDGE MCCABE: For the mid Snake stretch but not for the next lower one, the Hells Canyon I believe that was?

MR. HAYES: The Hells Canyon target is similar to the Succor Creek one. Although they're both different than other upstream TMDLs. There's a little bit of differences in concentrations.

JUDGE MCCABE: So these are targets that were determined by the state; am

I right, when they set the TMDL?
MR. HAYES: And approved by the EPA, correct.

JUDGE MCCABE: So would you agree that it would be appropriate for the Board to defer to the state interpretation of its own TMDL?

MR. HAYES: If the language of the TMDL supported that interpretation.

We see, in the record, references to 2013 documents that were sent in by the state or conversations that EPA had with the state saying, oh, we meant it to be an average. That is, in fact, not supported in this TMDL. In order --

JUDGE STEIN: Why is it not supported? I need to be clear on this point because I saw that in your reply brief. But why is it not supported? Because the TMDL sets this maximum or because the way slowed allocation was not expressed as a monthly -JUDGE MCCABE: And please --

JUDGE STEIN: -- is it --
JUDGE MCCABE: -- note that your yellow light has gone on which typically signals that you've got about five minutes left.

Eurika, I missed when it first went on. How many minutes does Mr. Hayes have left?

MS. DURR: Four.
JUDGE MCCABE: Okay. We don't necessarily strictly enforce it. Please take your time.

MR. HAYES: Thank you. I'm sorry. I got --

JUDGE STEIN: Let me state my -you said that, that what the state said is not supported by the TMDL itself. In what way is it not supported? Does the TMDL not set the waste load allocation on a monthly average basis? Or that the TMDL requires this instantaneous maximum and so that trumps? Which is it?

MR. HAYES: The target trumps.
However, there is no language to trump here. The target is clear that they need to be at or below a certain concentration in-stream during the season. And the waste load allocations are articulated as kilograms per day or pounds per day.

I'm familiar with the precedents that have set in other hearings, or cases rather, where that can be broadly interpreted to give the permit writer flexibility to create scenarios that allow those waste loads to be implemented faithfully to achieve the targets in the TMDL. But those are not, they are not in this TMDL.

JUDGE STEIN: I know this is a speculation question, but why would the state of Idaho allow for monthly averages of POTWs on a water body that apparently has 98 percent of its loads coming from point sources and yet allow for a monthly average to hit a target and not allow it for a water -- upstream reach
of the same river where it's like a half a percent of the total loading? I mean, why would they do that?

MR. HAYES: I cannot speculate to that answer, but I can observe that the sorts of facilities that are being allowed monthly averaging on the Hells Canyon stretch are actually different sorts of facilities that are being restricted to daily discharges from the Succor Creek stretch.

JUDGE STEIN: Isn't your real problem here with the TMDL?

MR. HAYES: I'm not challenging the TMDL actually. I'm trying to faithfully apply it.

If the problem with EPA is the TMDL then they should go back to the state and rewrite the TMDL so that they can use monthly averaging.

I'm trying to faithfully apply the TMDL as written and approved by EPA. I'm not challenging the TMDL. I'm trying to uphold
it.

JUDGE McCABE: Mr. Hayes, earlier you said, when I asked you whether you were challenging both the permit's sufficiency to meet the TMDL and the water quality standard, you replied that they were the same thing as far as you could see, taking loosely the water quality target of .07 milligrams per liter as standing for the applicable standard. Why is it that the state certification that this permit meets that .07 limit, why isn't that the final word? Why did the state already speak to whether this permit satisfies the TMDL and their water quality standard?

MR. HAYES: I think it is inconvenient for the EPA or the state to develop or certify a permit limit that is a maximum of 11 pounds a day from this facility. There is a concern that that would cause the facility to need to do an upgrade, and that is inconsistent with the wishes of the city.

And there is some interesting
language in the TMDL that says you won't need to do an upgrade until you exceed your design capacity.

JUDGE STEIN: But isn't that an assumption in the requirement of the TMDL as well?

MR. HAYES: It is. And I was hoping that we could talk about that.

One of the other assumptions of the TMDL is that facilities will be, of this nature, will be discharging at about 3.5 milligrams per liter. Unfortunately, the city of Homedale is exceeding that concentration in their effluent. As a result, they're discharging more phosphorus than the city or, I'm sorry, than the TMDL, frankly, presumed that they would.

JUDGE MCCABE: Is that information in the administrative record of this permit?

MR. HAYES: It is and if I had access, I would show it to you. There was a document, Attachment 9, and the EPA response
brief which discusses, which demonstrates this.

I'm going to run over my time. Can we go continue --

JUDGE HILL: Go ahead. And let's finish this point.

JUDGE McCABE: Yes, your red light has gone on but, please, go ahead and finish. You may need to read this to us, Mr. Hayes. The print is a little small; we forgot our magnifying glasses.

MR. HAYES: For me as well, and my apologies.

So what we have here is a spreadsheet that was created by the EPA using information provided by the city and by DEQ.

And on the far left where I have penciled in TPA concentration, that's the phosphorus concentration observed in effluent for the days, there next to it on the right. You see the design flow. And on the far right, you see the actual flow and the loading
based on the actual flow. And you can see that from this, the city of Homedale is discharging at or below 11 pounds per day; they're in compliance with their waste load allocation as articulated as a daily maximum here.

However, if they were to discharge at their design flow, that kind of middle column there that's entitled "Loading based on design flows," you see that this jumps up above 11. So they would be in violation of their waste load allocation here.

And the reason why this doesn't square with the language in the TMDL is that the city of Homedale is discharging in a concentration that exceeds the modeled concentration when they were developing the TMDL.

JUDGE STEIN: I know you're through with your time, but given what Judge Hill pointed out about the difference between the two TMDLs and the very small percentage
that point sources contribute to, what is the environmental significance of looking at this on a daily basis, as you would like us, or an automatic instantaneous versus the averaging? I'm having trouble, you know, understanding, you know, leaving the legalities aside, tell me why this matters.

MR. HAYES: This matters because we want the Snake River to achieve water quality standards; we want the target as articulated in the TMDL to be achieved.

And although this is a small discharge, if it operates in a way that is not consistent with the TMDL, it will result in the TMDL failing to achieve the target and water quality standards not being met for this stretch of the Snake River.

JUDGE STEIN: Assuming that your interpretation of what the TMDL is designed to do, I mean, as I think you pointed out, your case may rise or fall on whether or not this Board agrees with how you're interpreting the

TMDL .

MR. HAYES: You are correct.

If averaging is provided for in the language of this TMDL then this permit limit is acceptable. If averaging is not permitted in this TMDL, because there's no language in the TMDL authorizing such a move, there is language in other TMDLs, so you can see if they were going to insert language like this you'd know what it would look like, you can see it in other TMDLs. It's absent in the Succor Creek TMDL. Therefore, it's not appropriate to bootstrap it in and use it.

JUDGE McCABE: One more question, Mr. Hayes. By showing us this difference between the design flows and the actual flows, are you trying to tell us that you think the TMDL itself was inadequate?

MR. HAYES: No. I'm demonstrating to you that EPA should not be bound by language in the TMDL that implies that they will not need to upgrade the Homedale facility
until they exceed their thing. Because the Homedale facility is not operating as it was modeled to operate in the TMDL.

The primary, most important component of the TMDL is the development of a target in the waste load allocations to achieve that target. If, in fact, a facility upgraded is required so that ultimately Homedale can achieve their waste load allocations and thus the target will be achieved then an upgrade will be required. That said, they're already complying with the daily maximum limit of 11 . And if a daily maximum limit of 11 was part of the permit, it would not through the city of Homedale into violation immediately.

That's not what we're attempting to do.

JUDGE HILL: I'm sorry. I have one more question for you. So the permit right now requires weekly sampling. The permit right now is -- the permit, as written,
requires weekly sampling. And as far as I can tell, you're not challenging that. So are you -- I mean, again, if this permit were sent back, would you be seeking daily sampling in order to verify compliance with the daily limit?

MR. HAYES: No. It is not necessary that a facility sample daily in order to have a maximum daily limit as part of their effluent loads.

JUDGE HILL: You just want it always to be below 11 whenever they sample? MR. HAYES: Yes. JUDGE HILL: Okay. JUDGE MCCABE: Judge -JUDGE STEIN: I had one final question. You've talked quite a bit about the target. And it strikes me that when you refer to it target you then refer to it as an instantaneous limit. Why would the TMDL call something a target if that target was really a limit?

MR. HAYES: The target is the numerical value that allows them to achieve compliance with the water quality standards in the stretch.

JUDGE STEIN: So the target itself is not a limit?

MR. HAYES: I believe the target is the limit. But it is hard to articulate it as that. The limit is nutrients, a narrative standard in the Idaho water quality standards. So by creating a target, they are creating, in essence, a water quality standard unique to this stretch of the river.

JUDGE STEIN: I mean, isn't it really just a bunch of mathematical calculations? The design to be sure that at the end of the day you're going to have compliance with water quality standards? I have difficulty reading a target -- well, let me back up. If it was intended to be an absolute limit why didn't they call it that? MR. HAYES: I believe that the
language demonstrates that it is an absolute limit. It's directing that in order to being in compliance with water quality standards and securing the designated uses in that stretch of the river, you need to be at or below .07 milligrams per liter. The target is -JUDGE STEIN: Well, that -doesn't then turn that into a separate water quality standard? I mean, aren't the standards ultimately what you need to comply with?

MR. HAYES: Yes.
JUDGE STEIN: And that EPA, when it issues a permit and puts in limits, it needs to certify, as it has here, that this permit will achieve compliance in water quality standards? It seems like your target is taking on an importance that may or may not have been envisioned when the TMDL was drafted.

MR. HAYES: The semantics of that, frankly, elude me at some level.

However, I will say, as a person who has participated in the development of many TMDLs in Idaho, that people are working to achieve this target. The waste load allocations are tiered to achieve this target.

JUDGE STEIN: Thank you.
JUDGE MCCABE: And just to make sure we're clear before you close. You are not challenging the TMDL itself?

MR. HAYES: I am not challenging the underlying TMDL. I am merely seeking to faithfully apply it.

JUDGE McCABE: Okay. Thank you. You still may reserve five minutes of your time because it was the Judge's choice to go over time here. Thank you Mr. Hayes.

MR. HAYES: Thank you very much.
And I appreciated the questions.
JUDGE McCABE: Ms. Weber.
MS. WEBER: Good afternoon. And may it please the Court.

So the first point that I'd like
to make --

JUDGE MCCABE: Pull the mic down a little but closer so everyone in the courtroom can hear you better.

MS. WEBER: Is that better?

JUDGE McCABE: Try that. Can you hear her in the back when she speaks?

MS. WEBER: Okay. So the first issue or point that I want to raise is that Idaho Conservation League never submitted comments during the permit process on the .07 milligram per liter target. That was not an issue that was raised and so ICL has failed to actually exhaust their administrativeremedies on that. And the city of Moscow decision actually talks about the failure to raise the administrative -- or exhaust the administrative remedies.

JUDGE HILL: Before you go one though, they did say though that 16 and a half wouldn't meet 11 .

MS. WEBER: That's true. They did
say 16 and a half wouldn't meet 11. But 11 -JUDGE HILL: And that 11 on a monthly average wouldn't mean 11 on a daily average.

MS. WEBER: That's --
JUDGE HILL: So they put all of that in issue.

MS. WEBER: But what the region looked at with regard to the 11 was whether or not -- well, we looked at whether we were being consistent with the assumptions that were made in the waste load allocation.

And the waste load allocation, the way it was determined, was an average discharge concentration, times the monthly maximum design flow from the facility, times the conversion factor to get it to pounds per day, equals the waste load allocation.

The 0.07 target didn't actually factor into that equation for determining the waste load allocation. The 0.07 target has to be met at the point at which the mid Snake

Succor Creek watershed meets the Snake River Hells Canyon watershed. So it wasn't something that $D E Q$ used to determine the waste load allocation for this facility.

JUDGE HILL: What do you do with Mr. Hayes's argument that in the Hells Canyon TMDL they said explicitly this waste load allocation is a monthly average and didn't say anything of the sort in the mid Snake TMDL?

MS. WEBER: While it is true that in the mid Snake TMDL, DEQ didn't actually say that the waste load allocation should be applied as an average monthly effluent limit, they did make a link between the two TMDLs and that's on page 157 of the mid Snake TMDL, where they specifically said, "The determination of targets and the critical season for the Snake River is largely based upon work done in the Snake River Hells Canyon TMDL .

JUDGE HILL: I'm sorry. Could you repeat the page number?

MS. WEBER: Yes, it's page 157 of the TMDL.

JUDGE HILL: 157. Okay.
MS. WEBER: Of the mid Snake TMDL.
So looking at that statement, the permit greater turned to the Snake River Hells Canyon TMDL. And in that TMDL, DEQ said that the waste load allocations for the POTW should be applied as an average monthly effluent limit. It was the same -- the same equation was used in both TMDLs to determine the waste load allocations for POTWs.

So not only did the region look at whether or not we were being consistent with the assumptions made to determine the waste load allocation for the city, but the region also turned to various statements that $D E Q$ made during the development of the TMDL. And those statements had to do with the fact that the city wasn't required to do any upgrades to the facility as long as it stayed at or below the design capacity, the monthly maximum
design capacity for the facility.
In addition to that, the state, during the permitting process, issued a 401 certification on the permit where they made numerous statements that EPA had translated the waste load allocation consistently with the TMDL. And they not only said it in the 401 cert they said it in research response to ICL's comment on the 401 cert.

And the last thing that the region considered was the fact that 122.45 D requires the region to impose average weekly and average monthly effluent limits unless it's impracticable to do so. And we -- there was no finding in the record that it was impracticable to impose average monthly and average weekly effluent limits.

JUDGE HILL: What do you do with Mr. Hayes's argument that it was impracticable in this case because it didn't meet the TMDL? MS. WEBER: Well again, I think that goes to the issue of the TMDL target
being a . 07 milligram per liter. And again, that was, .07 is the target for the water body but that wasn't an assumption that was made when $D E Q$ was determining the actual waste load allocations for the POTWs in the watershed.

JUDGE HILL: What about the chart that Mr. Hayes handed out from your attachment 9 that shows that at least -- I mean, these are all 2006 data points -- but at least in 2006 they were fairly consistently discharging well above 3 and a half milligrams per liter. And if they had been at their design flow, they would have been violating 11 on a fairly regular basis. How does that square with the statement that they don't have to do anything new? It looks like they may well have to do something new if they get up to their design flow.

MS. WEBER: If they get up to their design flow, they are currently -- the city is discharging below their design flow. And what the region did for this table was
look at the statements that DEQ made in the TMDL to the effect that the facility wouldn't have to upgrade until they hit their design capacity. And we looked -- and they looked at the monitoring that had been done subsequent to the TMDL. So when the TMDL was actually drafted, DEQ used an assumption of 3.5 milligrams per liter because there was an absence of data for any of these facilities. None of these facilities were required to monitor and none of these facilities had effluent limits, phosphoruseffluent limits in their permit.

So what the permit writer looked at were was the actual concentrations that were occurring on a daily basis. And again, I know it's ICL's position that the waste load allocation should be applied on a daily basis, but the assumptions that went into the waste load allocation indicate it should be applied on an average monthly basis.

So these numbers are what came out
that day from the facility. And then if you multiply that by the actual flow from that day, you'll see that the load that was coming out is bumping up --

JUDGE HILL: But Ms. Weber, here's my question. What you just said was that they came up with the 3 and half milligrams per liter in the absence of any data, correct? MS. WEBER: Correct.

JUDGE HILL: And they basically said, okay, if they're discharging at 3 and a half milligrams per liter per day, times their design flow, that will meet their waste load allocation and they won't have to do anything.

Not all of those statements are true. Because if they do discharge at their design flow, at the current levels they're achieving, which is when you have data it looks like it's more than 3 and a half, they won't be able to do anything without upgrades.

So why should we give you credit for paying attention to the statement they
don't have to do anything if that was based on a bad assumption about what their current discharge levels were?

MS. WEBER: Well, I think, first of all, that the assumptions in the TMDL are not really before the Board. That's a TMDL issue which ICL said that they're not challenging.

And second of all --
JUDGE HILL: Well, but it is an issue here. Because the regulation requires you to be consistent with the assumptions and requirements of the TMDL. If the assumptions of the TMDL are themselves internally inconsistent, what does a permit writer have to do? What do we have to do on review?

MS. WEBER: Well I think under the regulations it says that we have -- that the permit writer needs to be consistent with the waste load allocations of that TMDL. And in this situation, the permit writer look at the waste load allocation for the TMDL, and looked
at the fact that it was the same equation that was used in this TMDL as was used for all the POTWs in the Snake River Hells Canyon TMDL. And in that TMDL, DEQ said that the waste load allocation should be applied as an average monthly effluent limit.

That's what we did here. We applied it as an average monthly effluent limit. The facility if they -- if the assumptions that what DEQ made is incorrect and DEQ chooses to go back and change those waste load allocations then they have the authority to do that.

But the equation remains the same in both the TMDLs. And in the Snake River Hells Canyon TMDL, the state said it should be applied as an average monthly effluent limit. And not only that, they said it in this permitting process to. They said in their certification that EPA had applied the waste load allocation correctly.

JUDGE McCABE: Ms. Weber, is the

Friends of the Earth decision of the D.C. Circuit controlling here?

MS. WEBER: No, it's not controlling in this case. And ICL has actually conceded the fact that they are not trying to say every TMDL, in every waste load allocation has to be applied as the daily maximum effluent limit.

I think the heart of this case is whether or not we're consistently -- we're translating the waste load allocation consistently with the assumptions that were made in the TMDL.

JUDGE MCCABE: Well the D.C.
Circuit made a big deal about how the statute says daily and I seem to be hearing a lot of monthly and weekly talk here. Is there anything --

MS. WEBER: But again, it's because --

JUDGE McCABE: -- that we should pay attention to their --

MS. WEBER: -- it's because that what the D.C. Circuit looked at was the fact that it's a total maximum daily load in the statute. And in this case, you have to look at the Regulation 122.44D1 where it says that the permit writer has to be consistent with the assumptions of the waste load allocation, which is what's the region did and petitioners failed to show that we were in clear error.

JUDGE HILL: So is the TMDL itself infirm? I mean, should it not -- I mean, or for the Hells Canyon TMDL. I mean, if you have to meet a maximum daily load, how can you have a monthly average waste load allocation? Isn't that just a mathematical problem?

MS. WEBER: Well, I think that it's also important to look at what you're dealing with in this case, what the pollutant is. The pollutant is phosphorus. Phosphorus is -- the issue is that it's a bio-cumulative effect. It's not what's being discharged per day that's the concern. It's the accumulation
of the pollutants throughout the water body that results in the algal blooms downstream.

JUDGE HILL: I think that's sort of the argument the agency made in Friends of the Earth. You want this to be daily because it's a pollutant that's really an annual problem.

JUDGE MCCABE: And what did the Court say to that argument in --

MS. WEBER: But again, Friends of the Earth really was centered on 303D of the Clean Water Act, which is the TMDL section and what that -- and that in 303D, it's a total maximum daily load.

Again, I think we have to turn to the regulations and the fact that, you know, the Board's own opinion in the city of Moscow has said that $122.44 D 1$ is the controlling regulation in this case. And that whether or not the permitting authority was consistent with the assumptions of the waste load allocation.

JUDGE STEIN: But don't we have to go a step further in this case than the Board did in Moscow? In Moscow, the question was really whether or not you had -- the limits had to be identical rather consistent with the requirements and the assumptions of the TMDL.

I don't hear petitioner arguing about the need for identity. I think that this case requires the Board to go beyond what we decided in Moscow. I think this is, on some levels, perhaps a more challenging case.

MS. WEBER: Well, and that may be. But I think that, again, in Moscow, the main holding was that the permit writer, because of 122.44D1 had flexibility in determining how the waste load allocation should be translated into a permit limit.

And in this situation, it may -it's different than the city of Moscow, but the heart of what we are looking at is the same. It's a factual issue in this case.

But again, what the region looked
at were the assumptions that went into the this waste load allocation. And the assumptions that went into this waste load allocation indicate that the waste load allocation should be applied as an average monthly effluent limit.

JUDGE STEIN: But at the time Moscow was decided, if I recall correctly, Friends of the Earth has not yet been decided. MS. WEBER: That is true. But once again, Friends of the Earth had to do with the statute for TMDLs, for total maximum daily loads. And there's nothing in that decision that says that that, once you get that waste load allocation, that daily load, you have to apply it as daily effluent limit. Nor does it make sense for the pollutant of concern in this case, which is phosphorus.
JUDGE HILL: I guess it's not surprise the case didn't say that since the case was a challenge to the TMDL. I think the question on the table is, is the logical
implication of the holding in that case also mean that a waste load allocation, in order to meet a daily load, has to, essentially, take into account the possibility of daily. That's, you know, I mean, I understand, I mean, Mr. Hayes was very careful to say he's not challenging the TMDL probably because he knows that that's not in this case. But what he is saying is that the TMDL, to be Consistent with Friends of the Earth, has to be, in essence, daily and this waste load allocation has to be daily in order to be consistent with the TMDL.

JUDGE MCCABE: And therefore, if it's ambiguous on its face we should interpret it that way.

MS. WEBER: Right. And I do understand what Mr. Hayes is arguing.

So you know, I think that there was a Court that spoke to how waste load allocations should be dealt with. And that's the American Farm Bureau Federation which
dealt with the Chesapeake Bay TMDL. And in that case, the Court stated that in some circumstances a state may write in NPDES permit limit that is different from the waste load allocation provided that it is consistent with the operative assumptions underlying the waste load allocation.

And once again, the region looked at the assumptions that went into this waste load allocation, the same equation in the mid Snake Succor Creek TMDL that was used in the Snake River Hells Canyon TMDL. And in the Snake River Hells Canyon TMDL, for the POTW waste load allocations, DEQ stated they should be applied as an average monthly effluent limit. That's what the region was looking at.

JUDGE MCCABE: Does the flexibility that our city of Moscow decision indicated in -- I'm not sure the name of the case, the Chesapeake case, farm --

MS. WEBER: American Farm --
JUDGE McCABE: -- American Farm

Bureau -- does it go so far as to enable the permit writer to make an assumption that is inconsistent with the state's own interpretation of its water quality standard as reflected in its target that it used for its TMDL?

MS. WEBER: So, no, I don't think it goes that far.

But I also don't think that the .07 milligram per liter is the water quality standard. The water quality standards that we're dealing with in this case are narrative standards. They address nuisance algae and excess nutrients. And once again, phosphorus is a bio-accumulative pollutant. The concern is not a daily concern; it's not come what's coming out of the pipes every day. The concern is the effect over the course of the season and the resulting algal blooms that result downstream in the Snake River Hells Canyon watershed.

And that .07 milligram per liter
is a target that has to be met at the confluence of the mid Snake Succor Creek watershed where it meets the Snake River Hells Canyon watershed.

JUDGE MCCABE: Does the record show us anything about where these algal blooms are occurring, if they are?

MS. WEBER: So you would have to turn to the Snake River Hells Canyon TMDL. There's a detailed discussion about the environmental effects that are occurring. That begins at page 258, and it goes on for quite a few pages about the environmental effects of phosphorus.

JUDGE McCABE: And does it tell us anything about where algal blooms are occurring?

MS. WEBER: If they -- I actually don't know that off the top of my head. I do knew that it's in the Snake River Hells Canyon.

And again, the reason why it's
applied over the season is because during the summer months it's hot, it creates the algal blooms downstream. But there is no indication at the point of discharge there are algal blooms that are occurring.

JUDGE MCCABE: Well, perhaps when Mr. Hayes comes back up for his rebuttal we can ask him since his members apparently are very familiar with this next section of the Snake River.

MS. WEBER: So, you know, once again, there were four things that the region looked at when it was determining whether or not we had properly translated the waste load allocation into a permit limit. It was, we wanted to be consistent; we wanted to meet the requirements of 122.44 D 1 , which requires us to look at the assumptions of the waste load allocation. We looked at numerous statements DEQ made during the TMDL promulgation process. We looked at DEQ's statements during this entire process that, yes, we were consistently
-- we were applying the waste load allocation appropriately and in compliance with their TMDL. And we looked at 122.45 D which requires average weekly, average monthly effluent limits.

JUDGE STEIN: Could you enumerate for me what the requirements and assumptions of the TMDL are in this case?

MS. WEBER: Yes. So the assumptions that went into determining the waste load allocation was that there was an average discharge concentration of 3.5 milligrams per leader, that was in and of itself an assumption that $D E Q$ made, times the monthly maximum design flow of use facilities, times the conversion factor, equals the waste load allocation. It's actually a fairly simple calculation.

And the intent was to keep these POTWs discharging at or below what they would discharge at their design capacity, because the point sources are not the issue in this
water body. The main issue are the non-point sources.

JUDGE HILL: Does the TMDL talk about where the 3 and a half milligrams per liter came from?

MS. WEBER: Not in the mid Snake TMDL. And there is very little discussion also in the Snake River Hells Canyon TMDL.

But in the Snake River Hells Canyon TMDL, on page 280, it talks about how using available data and estimated discharge concentrations of wastewater treatment plants of 3.5 milligrams per liter, the total phosphorus loading from the point source discharges was calculated at 516 kilograms per year, which is, I mean, those were the point sources for the Snake River Hells Canyon. But that is where they talk about it.

And they also talk about it in a footnote to Table 4.0 .8 on page 446 of that TMDL. And in the footnote, again, it's not entirely clear how they calculated the 3.5 but
it says, "Estimated value provided by Boise for use in absence of monitored data."

So looking at those two statements together, what $D E Q$ was really looking at was that they were -- they took the assumption that these wastewater treatment plants didn't have phosphorus removal capabilities at this time. And they made a conservative assumption that 3.5 would be their average discharge without any sort of phosphorus removal at their facility.

JUDGE HILL: So it's, in essence, it's not water quality based at all. It's sort of vague engineering judgmental --

> MS. WEBER: That's correct.

JUDGE HILL: -- what comes out of

MS. WEBER: That's correct.
And again, it's because the point sources themselves are not the main problem throughout the Snake River. It's the nonpoint sources. And the fact that the -- you
know, in the mid Snake TMDL, in itself, it's a -- the non-point source problem problems are 95+ percent of the load capacity.

JUDGE HILL: Let me ask, how did you get from 11 to 16 and a half?

MS. WEBER: So the 11 to 16 and a half is a conversion factor that permit writers use that come from the technical support document for water quality-based toxics control.

It's not an issue that was raised in this appeal so it's not something that I really looked at in detail for this.

But I do know that that's discuss in Appendix B of the fact sheet, towards the end. It discusses the conversion factor from average monthly to average weekly.

JUDGE HILL: Why not simply have set it at 11?

MS. WEBER: I think that if you apply average 11 as an average monthly, average weekly, daily it just, it doesn't make
sense. You have to take into consideration that there are going to be fluctuations that occur at a facility. And average, an average monthly effluent is, you know, samples that a facility takes over the course of the month and they average it out into an average monthly, you know, calculation. And average weekly is what they take over the course of a week to determine. It really depends on what's going on at the facility.

JUDGE HILL: But to give Mr . Hayes's argument sort of its full credit, I mean, you can imagine a situation -- I mean this is a mathematical, you know, extreme -but on day one, you know, you discharge 330 pounds and then you discharge zero the remaining 29 days of the month, and you average that out over 30 and you get, by gosh, 11. And 330 pounds is like 20 percent of the load capacity rather than half a percent. So why isn't that a concern in terms of the waste load allocation is 11 kilograms per day, but
you can imagine where it really had, you know, had a real measurable affect on the concentration in the water? Why isn't that a concern?

MS. WEBER: So again, it turns to the assumptions that went into the waste load allocation. And the fact that in the Snake River Hells Canyon TMDL, DEQ stated that the waste load allocation should be applied as an average monthly.

Now turning to that example, again, the concern with phosphorus is not a daily concern; it's not like you're going to discharge that amount and boom there's going to be an algal bloom at the point of the discharge. The concern is the accumulation throughout the season; it depends on temperature, it depends on average flow of the river, what's going on in the river at that time. It's not a daily concern.

JUDGE HILL: So that slug load wouldn't suddenly cause a short-term algae
bloom?

MS. WEBER: I am not a technical person, so I can't say that.

But I don't I also can say that I don't think the city would have that large of a discharge.

JUDGE HILL: Well presumably, not, no. But I mean, I think Mr. Hayes's point is that, you know, that the permit limit would allow them to do that. And is that consistent - -

MS. WEBER: Hypothetically it would allow them to do that.

But again, the concern with phosphorus is that it's a seasonal concern. It's what's going on over the course of the season. It's not a daily concern.

JUDGE HILL: Okay.

JUDGE STEIN: When you talk about a seasonal concern, why isn't the petitioner right that it's written in the TMDL the concept of a seasonal average or the season is
really just, you know, May to september and not necessarily averaging that? Why do we have to read it in the way you suggest?

MS. WEBER: Well, first, I think that there's nothing in the TMDLs that use the word instantaneous. There's nothing that indicates that that target has to be applied instantaneously in the river.

And I think that the reason it isn't the case because, again, phosphorus is -- there's a bio-accumulative concern; it's not at that point that is the main concern.

And second of all, you know, again, the 0.07 milligram per liter is the target at the point at which the mid Snake meets the Snake River Hells Canyon portion of the watershed.

JUDGE STEIN: And where could we find that?

MS. WEBER: That is -- if you will give me just a moment. It's on page 161 of the mid Snake TMDL. And it says, "The mid

Snake River Succor Creek reach is directly above the Snake River Hells Canyon reach. And thus, must meet the snake River Hells Canyon .07 milligram per liter of total phosphorus target where the two reaches meet."

JUDGE HILL: But Ms. Weber, that language that you just read said "must meet the target." Doesn't that actually support Mr. Hayes's argument that what -- I mean, I understand it's an ambient flow in the river. But his argument would be the ambient concentration in the river can't get above .07 because it has to meet that target. So it doesn't use the word instantaneous, or daily, or anything else but must meet sounds to me like not to be exceeded. Why doesn't that actually support his argument?

MS. WEBER: So even if you assume it's an instantaneous, which again, there's no indication in here that says it's an instantaneous number, you have to look at the assumptions that went to determining the waste
load allocation. And the assumptions that went into determining the waste load allocation, nowhere in those assumptions was .07 used.

JUDGE HILL: So your argument is that even if it is an instantaneous maximum it didn't have to be met by Homedale because the TMDL assumed that they were going to have an average over a month?

MS. WEBER: That's correct.
And in fact, in the response to comments that $D E Q$ drafted for the mid Snake TMDL, it specifically stated, "This TMDL allows time to plan for and obtain funds for nutrient removal by stating that the Homedale wastewater treatment plant must meet that nutrient target of .07 if the plant is going to undergo expansion." And the previous sentence to that is, "This TMDL allows the Homedale wastewater treatment plant to continue discharging at their current level."

JUDGE HILL: So did the state make
a mistake in setting an average waste load allocation to meet that .07 target? Or was it in error for EPA to approve that TMDL?

MS. WEBER: I think that if, I think questions regarding the TMDL are not at issue in this case. And it could be that $D E Q$ made an error. But that has to do with the TMDL itself and the assumptions that DEQ made and now is not the time to challenge the TMDL.

JUDGE HILL: What about Mr. Hayes

JUDGE MCCABE: Do you think that the Board has no jurisdiction to consider a faulty TMDL on which --

MS. WEBER: That is correct. The TMDL -- if petitioner didn't like the TMDL, the time at which to challenge the TMDL was when either the state -- in state court when the state promulgated the TMDL or in federal court went EPA approved the TMDL.

JUDGE HILL: But it --
MS. WEBER: And that approval
occurred in 2003.
JUDGE HILL: -- but this circles back to the argument that Judge Stein -- or the questions Judge Stein was asking earlier. If the TMDL is infirm then how can EPA certify that this permit meets water quality standards? So we may not be able to review the TMDL but we can review whether the permit limit meets water quality standards.

MS. WEBER: That's correct. And the water quality standards here are narrative water quality standards that were intended to address nuisance algae and excess nutrients. And at that the point of discharge, the permit -- at the point of discharge, there's no indication that the facility is exceeding water quality standards.

JUDGE MCCABE: Hasn't the state already made its position clear in choosing the target of .07 milligrams per liter? Isn't that the state's interpretation of its own water quality standard for total phosphorus
for your mid Snake section?
MS. WEBER: To determine the . 07 milligram per liter, the state went through numerous modeling assumption -- and they added assumptions into there. It really is dependent on river flow and the fact that that target is meant to be met in the Snake River Hells Canyon watershed. And the target is supposed to be met at the point at which those two river, portions of the river meet.

It's not the standard. The standard is a narrative water quality standard that the state then went through modeling exercise to determine what the target should be in the TMDL.

JUDGE McCABE: Doesn't the permit writer need to set a target in order to be able to write the permit limit?

MS. WEBER: The permit writer needs to look at the water quality standards, which again, are narrative standards, and the TMDL waste load allocation which --

JUDGE McCABE: They never look at what the state's interpretation of it its quarter quality standard is?

MS. WEBER: I don't - the TMDL itself doesn't actually say narrative water quality standards equals .07 milligrams per liter. . 07 milligrams per liter is the target for the point at which the two water bodies meet. It's not the standard itself.

And I see that my time is up.
JUDGE MCCABE: Do you have anything further you want to add?

MS. WEBER: NO.
JUDGE MCCABE: Judge Hill, any
further questions?
(No audible response.)
Judge Stein?
(No audible response.)
Thank you very much.
MS. WEBER: Thank you.
JUDGE MCCABE: Mr. Hayes, you have five minutes.

MR. HAYES: Thank you very much. A couple of quick clarifications. Again, we're not challenging the .07; that's something we are hanging our hat on. We want that to be the target; we're not challenging that target.

And also the notion that the point of compliance, if you will, is at the border between Succor Creek and the downstream segment is actually not supported in the record.

JUDGE McCABE: Say that again?
MR. HAYES: Opposing Counsel said that we needed to meet the target at the juncture between the two TMDLs. And that actually is part of the Hells Canyon TMDL. We need to meet that target so that we can then proceed -- we need to meet the target there so that the Hells Canyon TMDL can kick in. The target must be met in the reach -- sorry, too many TMDLs, too many targets. The Succor Creek TMDL target is a in-stream
concentrations in the entire reach. It is not merely to be judged as being compliant with the target as it flows out of that stretch of the river.

And the evidence for that, I believe is in the document that I --

JUDGE HILL: Assuming that's true, does that make any difference?

MR. HAYES: It doesn't make a difference to my argument; it doesn't make a difference to where you are heading with your questioning. I wanted to just point it out, though, that there is not a downstream point of compliance articulated for this target. This target is applicable within the entire mid Snake Succor Creek stretch.

JUDGE MCCABE: And where do we look in the record to confirm that?

MR. HAYES: The record reflects that on page 164, which I handed out earlier, of the Succor Creek TMDL where the targets shown to result in attainment of water
quality standards in support of designated uses in the reach is in-stream concentrations of less than or equal to .07.

Other TMDLs have different areas designated within them for compliance to various standards. There are no such intermediate designated points within this TMDL. This target is applicable in the entire reach of this section of the Snake.

Again, this target needs to be -can be thought of as the speed limit, if you will. If you're driving down the highway and the speed limit is 55 miles an hour, that means do not go above 55 miles an hour.

JUDGE HILL: Yes, but Mr. Hayes, Ms. Weber's argument, to use that analogy is the following: that the flow of traffic can't exceed 55 miles an hour, but that the state, when they allocated speeds to individual cars, said we assume that this car is going to go 55 miles per day. And in essence, this car is going to exceed it occasionally, but the total
flow will generally still be below 55 miles an hour. That's their whole argument, that the total daily load, the state assumed, would be a monthly average for this one facility. And how do you respond to that?

MR. HAYES: I respond to that by pointing out that that is not articulated in the TMDL in any way. It is articulated in other TMDLs. And I don't believe it's appropriate to usurp that language from one TMDL and insert it into this TMDL to make these particular permit limits.

I really don't have much else to add, although I would like to thank EPA Region 10. In all of the years that I've worked with the Idaho Conservation League, I've reviewed virtually every NPDES permit that has been issued by the region. This is only the second time which we have launched an appeal of something. And this is, frankly, only the first time when the appeal was not able to be resolved within the region.

Courtney and her colleagues, up and down the food chain at EPA Region 10, do very important work and it's very tough to do this sort of work in Idaho, and we greatly appreciate their attention.

Also I would like to thank Ms.
Durr. It's been invaluable as a citizen approaching the Board to have someone on the phone that I could ask questions about how to proceed.

So with that, I'll rest my case and I appreciate the opportunity to present this matter before you.

JUDGE McCABE: Thank you, Mr.
Hayes.
Judge Hill, do you have any further questions?

> (No audible response.)

Judge Stein?
(No audible response.)
Thank you very much. Thank you to all the parties. This has been a very
interesting and elucidating argument; and we will take the matter under advisement. MR. HAYES: Thank you.
(Whereupon, the above-entitled matter was concluded at 12:12 p.m.)

3
 $\frac{\mathbf{A}}{\square}$
 a.m 1:16 3:2
 able 48:20 72:7 73:18 78:21
 above-entitled 1:15 80:4

absence 12:8 21:12
24:15 47:9 48:8 63:2
absent 35:11
absolute 38:21 39:1
accedence $10: 15$ 22:12
acceptable $35: 5$
access 31:21
account $56: 4$
accounted 17:7
accumulation
52:22 66:16
achieve 18:4 28:13
34:9,15 36:7,9
38:2 39:16 40:4,5
achieved 16:21
19:18,20 34:11
36:11
achieving $48: 18$
acquaintance $4: 19$
Act 53:12
actual 32:22 33:1
35:16 46:4 47:15 48:2
add 74:12 78:14
added 73:4
addition 45:2
address 58:13
72:13
addressed 8:13
adequate $7: 14$ 22:15,17
administrative
1:12 31:19 41:14
41:17,18
advisement 80:2
affect 66:2
afternoon 40:20
agency $1: 22: 8,10$

2:163:5 53:4
agree 17:22 26:4
agrees $34: 22$
ahead $32: 5,8$
algae 22:14 58:13 66:22 72:13
algal 53:2 58:19 59:6,16 60:2,4 66:15
allocated 77:19
allocation 17:2,7
22:5 26:21 27:19
33:5,12 42:12,13
42:18,21 43:4,8
43:12 44:16 45:6
47:18,20 48:14
49:22 50:5,21
51:7,11 52:7,14
53:22 54:16 55:2
55:4,5,15 56:2,12
57:5,7,10 60:15
60:19 61:1,11,17
65:22 66:7,9 70:1 70:3 71:2 73:22
allocations 8:17 9:1
10:7 12:15 22:1
28:6 36:6,10 40:5
44:8,12 46:5
49:20 50:12 56:21
57:14
allow 8:16 18:4 28:12,18,21,22 67:10,13
allowed 3:14 29:6
allows 38:2 70:14 70:19
ambient 69:10,11
ambiguous 16:12
17:16 56:15
American 56:22 57:21,22
amicus 6:12
amount 20:15 66:14
analogy 77:16
analysis $23: 15$ annual 53:6
answer 24:4 29:5
apart 24:9
apologies $32: 13$
apologize 13:5
apparently 13:2
28:19 60:8
appeal 1:7 3:8 8:14 64:12 78:19,21
Appeals 1:1,18,20 1:22 3:4
appear 11:9
appearance $4: 2$
appearances $2: 1$ 4:10
Appendix 64:15
applicable 11:12,14 19:22 25:12 30:9 76:15 77:8
applied 7:3 14:5 15:16 22:2 43:13 44:9 47:18,20 50:5,8,17,20 51:7 55:5 57:15 60:1 66:9 68:7
applies 17:8
apply 6:20 23:7
29:15,20 40:12 55:16 64:21
applying 61:1 appreciate $6: 9$ 15:14 79:5,12
appreciated $40: 18$
approach 13:15
23:12,13
approaching 79:8
appropriate 26:5 35:13 78:10
appropriately 61:2 approval 71:22
approve 71:3
approved 26:2
29:21 71:20
April 1:11 24:10
areas 77:4
arguing 15:11 54:7 56:18
argument 1:4 3:6
$4: 414: 2243: 6$ 45:19 53:4,9 65:12 69:9,11,17
70:5 72:3 76:10
77:16 78:2 80:1
articulate $38: 8$ articulated 11:4 28:6 33:5 34:11 76:14 78:7,8
aside $34: 6$
asked 5:11 10:20 30:3
asking 12:6 72:4 asserted 12:20
assume 69:18 77:20
assumed 70:8 78:3
Assuming 34:18 76:7
assumption 31:5
46:3 47:7 49:2
58:2 61:14 63:5,8 73:4
assumptions 8:21
9:5,13 12:14 21:21 31:9 42:11 44:15 47:19 49:5 49:12,13 50:10 51:12 52:7 53:21 54:6 55:1,3 57:6,9 60:18 61:7,10 66:6 69:22 70:1,3 71:873:5
attachment $31: 22$ 46:7
attaining 7:19
attainment $7: 18$
14:1 19:5 76:22
attempting 6:18 36:17
attention 14:12 48:22 51:22 79:5
audible 74:16,18 79:18,20
authority 50:13 53:20
authorizing 35:7 automatic 34:4
available 62:11
Avenue 1:13 2:12
2:17
average 8:18,18 9:9
9:10 14:7,16,18
15:4,13,15 16:2
17:15 18:8,12
19:20 20:1,2,9,10
20:17 21:13 22:2
26:14 27:19 28:21
42:3,4,14 43:8,13
44:9 45:12,13,16
45:17 47:21 50:5
50:8,17 52:14
55:5 57:15 61:4,4
61:12 63:9 64:17
64:17,21,21,22
65:3,3,6,6,7,18
66:10,18 67:22
70:9 71:178:4
averaged 16:14 19:20
averages 10:11
11:10,10 28:18
averaging 8:17 9:4 10:14 18:10 29:7 29:19 34:4 35:3,5 68:2
$\frac{B}{B}$

B64:15
back 17:12 29:17 37:4 38:20 41:7
50:11 60:7 72:3
bad 49:2
based 20:17 22:2 33:1,9 43:18 49:1 63:13
basically $48: 10$
basis 8:17 22:2 27:20 34:3 46:14 47:16,18,21
Bay 57:1
Beautiful 13:10
begins 59:12
behalf $2: 2,85: 3$
believe 11:15,21

12:11 18:14 23:6 25:15 38:7,22 76:6 78:9
bench 13:15
best 10:19
better 41:4,5
beyond 54:9
big 51:15
bio-accumulative 58:15 68:11
bio-cumulative 52:20
bit 25:19 37:17
blind 12:16
bloom 66:15 67:1
blooms 53:2 58:19 59:7,16 60:3,5
Board 1:1 2:22 3:4 26:5 34:22 49:6 54:2,9 71:13 79:8
Board's 53:17
bodies 74:8
body 28:19 46:2 53:1 62:1
Boise 2:6 63:1
boom 66:14
bootstrap 35:13
border 75:8
bound 35:20
Box 2:5
brief 10:22 26:18 32:1
briefs 10:2
bring 14:11
broadly 28:10
brought 8:14
Building 1:13
bumping 48:4
bunch 38:15
burden 12:2
Bureau 56:22 58:1
$\overline{\mathrm{C} 2: 4}$
calculated 62:15,22
calculation 61:18 65:7
calculations 38:16 call 37:20 38:21 calls 12:13
Canyon 21:14
23:20,21 24:3
25:15,16 29:7
43:2,6,19 44:7
50:3,16 52:12
57:12,13 58:21
59:4,9,21 62:8,10
62:17 66:8 68:16
69:2,3 73:8 75:16
75:19
capabilities 63:7
capacity 31:3 44:22
45:1 47:4 61:21
64:3 65:20
car 77:20,21
careful 56:6
cars 77:19
case 18:13 20:22
34:21 45:20 51:4
51:9 52:4,18
53:19 54:2,9,11
54:21 55:18,20,21
56:1,8 57:2,20,20
58:12 61:8 68:10 71:6 79:11
cases 6:19 28:9
Catherine 1:18 3:11,20
cause 30:19 66:22
cell 3:13
centered 53:11
cert 45:8,9
certain 28:4
certification 30:10 45:4 50:20
certify $30: 17$ 39:15 72:5
chain 79:2
challenge $6: 18,19$ 55:21 71:9,17
challenging 7:11,13 8:4 9:8,8,10 29:13 29:22 30:4 37:2 40:9,10 49:8

54:11 56:7 75:3,5 change $50: 11$ characterizing 17:12
chart 46:6
Chesapeake 57:1 57:20
choice 40:15
chooses 50:11
choosing 72:19
circles 72:2
Circuit 51:2,15 52:2
circumstances 57:3
cited 15:6
citizen 79:7
city 1:7 3:6 11:22
30:21 31:12,15
32:16 33:2,15
36:15 41:15 44:16
44:20 46:21 53:17
54:19 57:18 67:5
CJ 14:20
clarifications 75:2
clarifying 21:10
clarity 21:3
Clean 53:12
clear 9:7 18:9 21:17 26:17 28:3 40:8 52:9 62:22 72:19
Clerk 2:22
close $40: 8$
closer 41:3
colleague 4:19
colleagues 21:6 79:1
column 33:9
come 58:16 64:8
comes 60:7 63:16
comfortable 18:20
coming 28:20 48:3 58:17
comment 8:12 45:9 commented 8:11 comments 11:1 41:11 70:12
compliance $7: 4$
$33: 437: 538: 3,18$ 39:3,16 61:2 75:8 76:14 77:5
compliant 76:2
comply 9:13 11:6 39:10
complying 36:12
component 36:5
conceded 51:5
concentration 14:3 14:9,19 15:4 16:2 17:3,4,9 18:1 19:8 20:3,8,12,13,17 25:5,11,11 28:4 31:13 32:18,19 33:16,17 42:15 61:12 66:3 69:12
concentrations 14:17 16:19 17:21 25:20 47:15 62:12 76:1 77:2
concept 67:22 concern 30:19 52:22 55:18 58:15 58:16,18 65:21 66:4,12,13,16,20 67:14,15,17,20 68:11,12
concluded 80:5 concurrently 24:19 conditions 17:6 confirm 76:18 confluence 59:2 confusion 15:15 connected 8:8 conservation 2:2,4 4:15 5:15,16,17 41:10 78:16 conservative 63:8 consider 71:13 consideration 23:16 65:1 considered 45:11 consistency 7:12 consistent 6:17 7:22 9:5 10:6,6

11:15 34:14 42:11 44:14 49:12,19
52:6 53:20 54:5
56:10,13 57:5
60:16 67:10
consistently 45:6
46:10 51:10,12 60:22
constant 19:11
Constitution 1:13
constructed 8:20
construed 6:14
contaminated 6:6
continue 32:4 70:21
contribute $34: 1$
control 64:10
controlling 51:2,4
53:18
conversations 26:12
conversion 42:17
61:16 64:7,16
copies 13:13
copy 13:19
correct 21:4 26:3 35:2 48:8,9 63:15 63:18 70:10 71:15 72:10
correctly 6:8 7:2 50:21 55:8
counsel 2:11,16 4:11,17 5:5 16:3 75:13
couple 75:2
course 58:18 65:5,8
67:16
court 6:19 40:21
53:9 56:20 57:2 71:18,20
Courtney 2:9 5:2 79:1
courtroom 1:12
13:8 41:3
create 10:9 11:20 28:12
created 7:17 10:11

15:18 24:6,8,19 32:15
creates 60:2
creating $10: 12$
12:14 38:11,11
credit 48:21 65:12
Creek 13:20 23:9 23:10,22 25:17 29:10 35:12 43:1 57:11 59:2 69:1 75:9,22 76:16,21
critical 17:6 43:17
current 16:18
48:17 49:2 70:21
currently 46:20
Curtin 2:15 5:4,4
$\frac{\text { D }}{\text { D.C } 1: 2,142: 18}$
$51: 1,1452: 2$
daily $9: 2,20 \quad 10: 5,18$

11:5,19 12:20
22:2 29:9 33:5
34:3 36:13,13
37:4,5,8,9 42:3
47:16,18 51:7,16
52:3,13 53:5,14
55:13,15,16 56:3
56:4,11,12 58:16
64:22 66:13,20
67:17 69:14 78:3
Dam 14:20
data 46:9 47:9 48:8
48:18 62:11 63:2
dated $24: 10,12$
dates 24:20
day 9:9 13:11 25:6
28:7,7 30:18 33:3
38:17 42:18 48:1
48:3,12 52:22
58:17 65:15,22
77:21
days 10:13 32:20 65:17
deal 51:15
dealing 52:18 58:12 dealt 56:21 57:1
decided 54:10 55:8 55:9
decision 41:15 51:1 55:14 57:18
decision-making 24:3
defer 26:6
demonstrates 32:1 39:1
demonstrating 35:19
dependent 20:14 73:6
depends 65:9 66:17 66:18
DEQ 32:16 43:3,11 44:7,17 46:4 47:1 47:7 50:4,10,11 57:14 60:20 61:14 63:4 66:8 70:12 71:6,8
DEQ's 60:21
derived 7:3
describes 13:20
describing 14:22
design 22:3 31:2 32:21 33:8,10 35:16 38:16 42:16 44:22 45:1 46:12 46:17,20,21 47:3 48:13,17 61:15,21
designated 14:2 19:6 39:4 77:1,5,7
designed $34: 19$
detail 64:13
detailed 59:10
determination 43:17
determine 43:3 44:11,15 65:9 73:2,14
determined 15:19 22:16 25:9,22 42:14
determining 42:20 46:4 54:15 60:13 61:10 69:22 70:2
develop 30:17 developing 8:22 33:17 development 24:21
36:5 40:2 44:18
devices 3:14
difference 33:21
35:15 76:8,10,11
differences 25:20
different 22:21
23:1,3,4 24:20
25:18 29:8 54:19 57:4 77:4
difficulty $38: 19$
directing 39:2
directly $69: 1$
Director 2:3
disagreed 18:7,11
discharge 17:4 33:7 34:13 42:15 48:16 49:3 60:4 61:12 61:21 62:11 63:9 65:15,16 66:14,16 67:6 72:14,15
discharged 20:15 52:21
dischargers 23:3
discharges 29:9 62:15
discharging 31:11 31:15 33:3,15 46:10,21 48:11 61:20 70:21
discuss 64:14
discusses 32:1
64:16
discussion 59:10 62:7
dispose 24:17
document 13:3
14:14 21:14 24:15 24:16 31:22 64:9 76:6
documents 10:12 24:9 26:11
doing 18:20
downstream 22:6

53:2 58:20 60:3
75:9 76:13
draft 8:11 11:2
drafted 39:20 47:7
70:12
driving 77:12
Durr 2:22 3:3 27:9 79:7
$\frac{\mathbf{E}}{\mathbf{e a r l i e r ~ 2 4 : 1 6 ~ 3 0 : 2 ~}}$ 72:4 76:20
Earth 51:1 53:5,11 55:9,11 56:10
East 1:13
effect 47:2 52:21 58:18
effects 59:11,14
effluent 10:5 31:14
32:19 37:10 43:13
44:9 45:13,17
47:12,12 50:6,8 50:17 51:8 55:6 55:16 57:15 61:4 65:4
either 71:18
elucidating $80: 1$
elude 39:22
enable 58:1
enforce 27:11
engineering 63:14
ensure 6:22 7:4
enter 17:5
entire 60:22 76:1 76:15 77:8
entirely 62:22
entitled 33:9
enumerate 61:6
environmental 1:1
1:2,18,20,22 2:8 2:10,15 3:4,5 34:2 59:11,13
envisioned 39:19
EPA 1:13 5:1,3 6:19 7:7 12:1,4,12 26:3,12 29:16,21 30:16 31:22 32:15

35:20 39:13 45:5
50:20 71:3,20
72:5 78:14 79:2
EPA's 6:13
equal 14:4 17:2
18:1 19:8 77:3
equals 42:18 61:16 74:6
equation $42: 20$
44:10 50:1,14 57:10
equipment 13:9
error 7:8 12:12,21
52:9 71:3,7
errored 12:16
ESQ 2:9,15
essence 38:12 56:11 63:12 77:21
essentially $15: 1$ 56:3
estimated 62:11 63:1
Eurika 2:22 27:6 eutrophication 25:7
evidence 76:5
example 66:11
exceed 14:9 20:2
31:2 36:1 77:18 77:22
exceeded 17:13 18:18 69:16
exceeding 18:5 31:13 72:16 exceeds 33:16 excess 58:14 72:13 exercise 73:14 exhaust $41: 14,17$ existing 6:19 17:20 expansion 70:18 expected 21:2 explain 4:3 19:14 explicit 16:16
explicitly 43:7
expressed 21:3 26:21
extreme 65:14

F	first 20:6 27:6	go 4:4 7:11 29:17	24:11,18 25:2,9	67:18 69:6 70:5
face 12:8 56:15	40:22 41:8 49:4	32:4,5,8 40:15	25:16 26:2,8 27:7	70:22 71:10,21
facilities 29:6,8	68:4 78:21	41:19 50:11 54:2	27:13 28:1 29:4	72:2 74:14 76:7
31:10 47:9,10,11	five 4:8 5:11 27:4	54:9 58:1 77:14	29:13 30:2,15	77:15 79:16
61:15	40:14 74:22	77:20	31:7,20 32:10,12	historic 13:7
facility $30: 18,20$	fix 10:4 11:19	goal 13:21	34:8 35:2,15,19	hit 28:21 47:3
35:22 36:2,7 37:8	flexibility $28: 11$	goes 45:22 58:8	37:7,13 38:1,7,22	holding 54:14 56:1
42:16 43:4 44:21	54:15 57:18	59:12	39:12,21 40:10,16	Homedale 1:7 3:7
45:1 47:2 48:1	flow 20:9,11,14,18	going 13:1 18:1	40:17 46:7 56:6	11:22 31:13 33:2
50:9 63:11 65:3,5	22:3 32:21,22	23:5 32:3 35:9	56:18 60:7 71:10	33:15 35:22 36:2
65:10 72:16 78:4	33:1,8 42:16	38:17 65:2,10	74:21 75:1,13	36:9,15 70:7,15
fact 21:3 26:14	46:12,18,20,21	66:13,14,19 67:16	76:9,19 77:15	70:20
36:7 44:19 45:11	48:2,13,17 61:15	70:8,17 77:20,22	78:6 79:15 80:3	Honorable 1:18,19
50:1 51:5 52:2	66:18 69:10 73:6	Good 3:16 4:16	Hayes's 43:6 45:19	1:21 3:10
53:16 63:22 64:15	77:17 78:1	40:20	65:12 67:8 69:9	Honors 4:13 5:9
66:7 70:11 73:6	flows 23:16 33:10	gosh 65:18	he'll 4:21	hoping 31:8
factor 42:17,20	35:16,16 76:3	governed 22:18	head 59:19	hot $60: 2$
61:16 64:7,16	fluctuations 65:2	greater 21:2 44:6	heading 76:11	hour 4:5,6 77:13,14
factual 7:8 54:21	folks 6:15	greatly 79:4	hear 41:4,7 54:7	77:18 78:2
failed 41:13 52:9	following 77:17	group 5:17	hearing 1:16 5:10	Hypothetically
failing 34:15	food 79:2	growth 22:13	51:16	67:12
failure 41:16	footnote 62:20,21	guess 8:5 20:19	hearings 28:9	
fairly $46: 10,13$	forgot 32:11	55:19	heart 51:9 54:20	
61:17	forth 17:12	guiding 18:2	Hells 21:14 23:20	ICL 41:13 49:7
faithfully 21:20	found 21:18,19		23:21 24:3 25:15	
28:13 29:14,20	23:8,21,22 24:5	H	25:16 29:7 43:2,6	ICL's 45:9 47:17
40:12	four 27:9 60:12	half 4:5,6 29:1	43:19 44:6 50:3	ID 3:8
fall 4:21 34:21	frankly 31:16	41:20 42:1 46:1	50:16 52:12 57:12	ID-002042-7 1:9
familiar 28:8 60:9	39:22 78:20	48:7,12,19 62:4	57:13 58:20 59:3	Idaho 2:2,4,6 4:14
far 3:19 30:7 32:17	Friends 51:1 53:4	64:5,7 65:20	59:9,20 62:8,9,17	5:15,16 6:4,6
32:21 37:1 58:1,8	53:10 55:9,11	hand 13:3,14	66:8 68:16 69:2,3	28:18 38:10 40:3
farm 56:22 57:20	56:10	handed 13:18 46:7	73:8 75:16,19	41:10 78:16 79:4
57:21,22	full 65:12	76:20	helps 21:20	Idaho's 5:16
faulty $71: 14$	fundamental 12:12	hanging 18:17 75:4	highway 77:12	identical 54:5
fax 2:7,14	funds 70:14	hard 38:8	Hill 1:19 3:11,21	identified 20:8 identity $54 \cdot 8$
federal 71:19	further 54:2 74:12	hat 18:17 75:4	9:16 14:11,14	identity 54:8 imagine $65 \cdot 13$ 66:1
Federation 56:22	74:15 79:17	Hayes 2:3 4:13,14 $4: 17,185: 8,97: 9$	15:3 16:1,15,17 $16: 22$ 18:6,16	imagine 65:13 66:1 immediately 36:16
feel 18:19	G	4:17,18 5:8,9 7:9 $7: 16$ 8:5,10 9:12	16:22 18:6,16 20:5 32:5 33:21	implemented 9:14
$\begin{aligned} & \text { figure 12:2 20:11 } \\ & 20: 20 \end{aligned}$	general 2:16 5:5	9:16 10:4 11:3,13	36:19 37:11,14	18:3 28:13
filed 6:12	23:11,13	12:11 13:6,10,13	41:19 42:2,6 43:5	implementing 8:16
final 30:12 37:16	generally $78: 1$	13:18 14:13 15:14	43:21 44:3 45:18	implication 56:1
finalized 24:20	generated 12:14	16:5,9,17 17:17	46:6 48:5,10	implied 18:8
find 68:19	give 28:11 48:21	18:14,19 19:4,12	49:10 52:10 53:3	implies 35:21
finding 12:4 45:15	65:11 68:21	19:17 20:5,10,19	55:19 62:3 63:12	importance 6:2
finish 32:6,8	given 20:20 33:20	21:9,17 22:8,11	63:16 64:4,18	39:18
	glasses 32:11	22:16,20,22 23:11	65:11 66:21 67:7	important 5:20 6:3

Neal R. Gross and Co., Inc.
(202) 234-4433

6:8 18:3 36:4 52:17 79:3
impose 45:12,16
imposing 12:9
impracticability 10:21 12:3,6
impracticable 45:14,16,19
impractical 10:16 11:4,17
in-stream 14:3,16 17:8 18:5 19:7 28:5 75:22 77:2
inadequate 35:18 inappropriate 23:6 inappropriately 8:7
inconsistent 30:21 49:15 58:3
inconvenient 30:16 incorrect 50:10
indicate 47:20 55:4
indicated 57:19
indicates 68:7
indication 60:3 69:20 72:16
individual 77:19
infirm 52:11 72:5
information 24:14 24:16 31:18 32:16
initial 7:10
insert 35:9 78:11
instance 8:19 9:2 10:17 17:9
instantaneous 15:1 15:7 19:11 27:21 34:4 37:20 68:6 69:14,19,21 70:6
instantaneously 68:8
integrated 24:2
integration 25:1
intelligence 6:9
intended 38:20 72:12
intent 61:19
interesting 30:22

80:1	$43: 5,2144: 3$

intermediate 77:7
internally 49:14
interpret 56:15
interpretation 26:6
26:9 34:19 58:4 72:21 74:2
interpreted 28:10
interpreting 34:22
introducing 5:14
invaluable 79:7
issue 5:22 7:7 8:11
8:14 10:21 11:1
20:21 41:9,13
42:7 45:22 49:7
49:11 52:20 54:21
61:22 62:1 64:11 71:6
issued 45:3 78:18
issues 5:19,21 8:4 39:14
J

JAMES 2:15
Jim 5:4
Judge 1:18,20,22
3:16,21,22 4:16
4:22 5:6 7:9 8:3,9
9:6,16 10:20 11:7
12:1 13:4,7,11,16
14:11,14 15:2,3,5
15:22 16:1,7,10
16:15,17,22 18:6
18:16 19:1,10,13
20:5,19 21:16
22:4,9 23:19 24:8
24:12 25:2,13,21
26:4,16,22 27:1,2
27:10,15 28:16
29:11 30:2 31:4
31:18 32:5,7
33:19,20 34:18
35:14 36:19 37:11
37:14,15,15,16
38:5,14 39:7,13
40:6,7,13,19 41:2
41:6,19 42:2,6

45:18 46:6 48:5
48:10 49:10 50:22
51:14,21 52:10
53:3,8 54:1 55:7
55:19 56:14 57:17
57:22 59:5,15
60:6 61:6 62:3
63:12,16 64:4,18
65:11 66:21 67:7
67:18,19 68:18
69:6 70:5,22
71:10,12,21 72:2
72:3,4,18 73:16
74:1,11,14,14,17
74:21 75:12 76:7
76:17 77:15 79:14
79:16,19
Judge's 40:15
judged 76:2
Judges 3:10
judgmental 63:14
jumps 17:11 33:10
juncture 75:15
June 24:12
jurisdiction 71:13
Justin 2:3 4:14
$\frac{\mathbf{K}}{\text { Kathie } 1: 21 \text { 3:11 }}$

3:22
keep 61:19
kick 75:19
kilograms 28:6
62:15 65:22
kind 10:1 17:11 33:8
knew 59:20
know 4:9 17:13
20:22 24:4 28:16
33:19 34:5,6
35:10 47:17 53:16
56:5,19 59:19
60:11 64:1,14
65:4,7,14,15 66:1
67:9 68:1,13
knows 56:8

label 15:3
language 8:20 15:6
15:8 17:1 18:8,10
18:21 19:2 21:18
21:19 23:7,8,20
26:8 28:2 31:1
33:14 35:4,7,8,9
35:21 39:1 69:7
78:10
large 67:5
largely 43:18
largest 5:17
launched 78:19
Law 2:17
LC 20: 8
leader 61:13
League 2:2,4 4:15
5:15,16 41:10 78:16
leave $21: 5$
leaving 34:6
left 3:21 27:5,8 32:17
legalities 34:6
let's 32:5
level 39:22 70:21
levels 48:17 49:3 54:11
lift 23:7
light 27:3 32:7
limit 6:16,17 7:1,2
7:21,22 9:3,9,11
9:21,21,22 10:3,5
10:9,13,16,19
11:5,16 21:22
30:11,17 35:5
36:13,14 37:6,9
37:20,22 38:6,8,9
38:21 39:2 43:13
44:10 50:6,9,17
51:8 54:17 55:6
55:16 57:4,16
60:15 67:9 72:9
73:18 77:11,13
limits 7:12,14

12:10 39:14 45:13
45:17 47:12,12
54:4 61:5 78:12
link 43:14
liter 14:4,10 18:5
19:9 23:17 25:5
30:8 31:12 39:6
41:12 46:1,11
47:8 48:8,12
58:10,22 62:5,13
68:14 69:4 72:20
73:3 74:7,7
little 25:19 32:10
41:3 62:7
load 8:16 9:1 10:7
12:15 20:8,15
22:1,5 27:19 28:6
33:4,12 36:6,9
40:4 42:12,13,18
42:21 43:4,7,12
44:8,12,16 45:6
46:4 47:17,20
48:3,13 49:20,22
50:4,12,21 51:6
51:11 52:3,7,13
52:14 53:14,21
54:16 55:2,3,4,15
55:15 56:2,3,11
56:20 57:5,7,10
57:14 60:14,18
61:1,11,17 64:3
65:20,22 66:6,9
66:21 70:1,2 71:1
73:22 78:3
loading 29:2 32:22
33:9 62:14
loads 28:12,20
37:10 55:13
locate 16:4
location 14:17
logical 55:22
long 44:21
look 9:19 11:11,13
17:1 35:10 44:13
47:1 49:21 52:4
52:17 60:18 69:21
73:20 74:1 76:18
looked 42:9,10 47:4 47:4,14 49:22 52:2 54:22 57:8 60:13,19,21 61:3 64:13
looking 14:15 34:2 44:5 54:20 57:16 63:3,4
looks 46:16 48:19
loosely 30:7
lot 25:1 51:16
lower 25:14

ma'am 16:18 magnifying 32:11 magnitudes 23:4 main 54:13 62:1 63:20 68:12
maintained 15:20 mathematical 38:15 52:15 65:14
matter 1:6,15 5:10 6:7,10,11,21 8:13 25:3 79:13 80:2,5
matters 21:1 34:7,8
$\boldsymbol{\operatorname { m a x }}$ 15:1
maximum 9:2 10:5
10:18 11:5,19 12:20 18:12,18 26:20 27:21 30:18 33:5 36:13,14 37:9 42:16 44:22 51:8 52:3,13 53:14 55:12 61:15 70:6
MC-2355A 2:18
McCabe 1:18 3:11
3:16,20 4:16,22
5:6 7:9 8:3,9 9:6
13:4,7,11,16 15:2
15:5,22 16:7,10
19:1,10,13 22:4,9
23:19 25:2,13,21
26:4,22 27:2,10
30:2 31:18 32:7
35:14 37:15 40:7

40:13,19 41:2,6
50:22 51:14,21
53:8 56:14 57:17
57:22 59:5,15
60:6 71:12 72:18
73:16 74:1,11,14
74:21 75:12 76:17
79:14
mean 9:17 11:11
16:22 19:10 24:9
29:2 34:20 37:3
38:14 39:9 42:3
46:8 52:11,11,12
56:2,5,6 62:16
65:13,13 67:8
69:9
meaning $17: 3$
means 16:13 77:14
meant 26:13 73:7
measurable 66:2
meet 7:14 25:4,10
30:5 41:21 42:1
45:20 48:13 52:13
56:3 60:16 69:3,5
69:7,13,15 70:16
71:2 73:10 74:9
75:14,17,18
meets 30:11 43:1 59:3 68:16 72:6,9 members 5:18 60:8 membership 6:2,7 merely 6:20 40:11 76:2
met 34:16 42:22
59:1 70:7 73:7,9
75:20
mic 41:2
mid 13:19 23:9
25:13 42:22 43:9
43:11,15 44:4
57:10 59:2 62:6
64:1 68:15,22,22
70:12 73:1 76:16
middle 33:8
mile 17:9
miles 77:13,14,18 77:21 78:1
milligram 41:12
46:1 58:10,22
68:14 69:4 73:3
milligrams 14:4,10
17:4 18:5 19:9
23:17 25:4 30:8
31:12 39:6 46:11
47:8 48:7,12
61:13 62:4,13
72:20 74:6,7
mind 8:7 9:20
mine 4:19
minute 15:11 16:4 16:13 25:6
minutes 4:8 5:12
27:4,7 40:14 74:22
missed 27:6
mistake 71:1
modeled 33:16 36:3
modeling 73:4,13
moment 68:21
monitor 47:11
monitored 63:2
monitoring 47:5
month 10:14 65:5 65:17 70:9
monthly 8:17 9:4,9 10:9,10,16 11:10 11:20 12:9 20:2 22:2 26:21 27:19 28:18,21 29:6,18 42:3,15 43:8,13 44:9,22 45:13,16 47:21 50:6,8,17 51:17 52:14 55:6 57:15 61:4,15 64:17,21 65:4,7 66:10 78:4
months 60:2
moral 4:20
morning 3:16,17 4:16
Moscow 41:15 53:17 54:3,3,10 54:13,19 55:8 57:18
move 35:7
multi-multi-year 24:22
multiply 48:2
$\overline{\mathrm{N}} \overline{\mathrm{N} 2: 5}$
N.W 1:13 2:17
name 57:19
narrative 38:9
58:12 72:11 73:12
73:21 74:5
narrow 7:6
nature 19:16 31:11
necessarily $27: 11$ 68:2
necessary $12: 20$ 37:8
need 11:11,13 25:4 26:17 28:4 30:20 31:1 32:9 35:22 39:5,10 54:8 73:17 75:17,18
needed 15:20 20:11 25:10 75:14
needs 39:15 49:19 73:20 77:10
never 17:14 41:10 74:1
new 46:16,17
non 63:21
non-monthly $11: 16$
non-point 62:1 64:2
note 27:2
notice $1: 16$
notion 18:1 75:7
NPDES 1:7,9 3:7,8 6:22 57:3 78:17
nuisance 58:13 72:13
number 3:8,8 21:7 43:22 69:21
numbers 47:22
numerical 38:2
numerous 45:5 60:19 73:4
nutrient 70:15,17
nutrients 38:9 58:14 72:13
0
observe 29:5
observed 16:19
17:20 20:18 32:19
obtain 70:14
obviously 9:17
20:13
occasionally 77:22
occur 65:3
occurred $72: 1$
occurring 47:16
59:7,11,17 60:5
Office 2:11,16,17 5:5
oh 4:12 26:13
okay 13:6 14:13
18:16 27:10 37:14 40:13 41:8 44:3 48:11 67:18
oldest 5:16
once 9:6 55:11,14
57:8 58:14 60:11
operate $36: 3$
operates $34: 13$
operating 36:2
operative $57: 6$
opinion 53:17
opportunity 79:12
Opposing 75:13
oral 1:4 3:6 4:4
ORC-158 2:12
order 4:3 11:6 25:6
26:15 37:5,9 39:2 56:2,12 73:17
organization 5:14
$\frac{\mathbf{P}}{\text { P-R-O-C-E-E-D-... }}$

3:1
p.m 80:6
P.O 2:5
page 13:19 14:12 14:22 15:8,22

Neal R. Gross and Co., Inc.
(202) 234-4433

16:3,11,15 18:22
43:15,22 44:1
59:12 62:10,20 68:21 76:20
pages 16:7 59:13 paragraph 20:7 part 8:22 36:14 37:9 75:16 participated 40:2 particular 6:21,22 8:19 11:1 78:12 parties 79:22 party 4:5
pay 51:22
paying 48:22
penciled $32: 18$
Pennsylvania 2:17
people 24:7 40:3
percent 28:19 29:2 64:3 65:19,20
percentage $33: 22$
period 15:19 18:10
permanent 9:3 21:22
permit 1:9 3:8 6:16 6:16,22 7:12,14 7:21,21 8:11 9:18 9:19,19 10:3 11:2 11:16 12:5 21:20 28:11 30:11,13,17 31:19 35:4 36:14 36:20,22,22 37:3 39:14,16 41:11 44:6 45:4 47:13 47:14 49:15,19,21 52:6 54:14,17 57:4 58:2 60:15 64:7 67:9 72:6,8 72:14 73:16,18,19 78:12,17
permit's 30:4
permitted 35:6
permitting 45:3
50:19 53:20
person 40:1 67:3
perspective 12:19 petitioner 4:6,7,11

5:8 54:7 67:20
71:16
petitioners 4:2 52:8 phone 79:9
phones 3:13
phosphorus 7:2
14:5,8,16 15:16
15:20 16:19 17:21
20:7 22:1,13
23:18 25:5 31:15
32:19 47:12 52:19
52:19 55:18 58:14
59:14 62:14 63:7
63:10 66:12 67:15
68:10 69:4 72:22
pick 4:21
pipes 58:17
plain 18:21 19:2
plan 70:14
plant 1:8 3:7 70:16
70:17,20
plants 62:12 63:6
please 3:13,14 4:8
4:11 13:16 16:4
19:1 26:22 27:11
32:8 40:21
point 13:22 19:2
20:3 21:11,14
23:2 24:5 26:17
28:20 32:6 34:1
40:22 41:9 42:22
60:4 61:22 62:14
62:16 63:19,22
66:15 67:8 68:12
68:15 72:14,15
73:9 74:8 75:7
76:12,13
pointed 15:8 16:1
33:21 34:20
pointing 16:15,18
17:17 78:7
points 46:9 77:7
pollutant 52:18,19
53:6 55:17 58:15
pollutants 53:1
portion 68:16
portions 11:8 73:10
position 23:1 47:17 72:19
possibility 56:4 possible 10:8 11:19
POTW 44:8 57:13
POTWs 28:18 44:12 46:5 50:3 61:20
pounds 9:9 10:5 28:7 30:18 33:3 42:17 65:16,19
precedents 6:20,21 28:8
precision 24:14
present 2:21 79:12
presiding 3:12
pressing 6:7
presumably 20:22 67:7
presume 12:8
presumed 31:16
prevent 22:12,14 25:6,7
previous 70:18
primary 36:4
principle 18:2
print 32:10
pro 4:15
probably 56:7
problem 12:17
21:16 29:12,16 52:15 53:7 63:20 64:2
problems 64:2
proceed 12:6 75:18 79:10
proceeding 12:5
process 24:22
41:11 45:3 50:19 60:20,22
Program 2:3
projector 13:2
promulgated 71:19
promulgation 60:20
properly 60:14
Protection 1:2 2:8

2:10,15 3:5
protective 23:12,14 provided 32:16
35:3 57:5 63:1
Pull 41:2
pulled 13:19
punitive 11:21
pursuant 1:16
put 42:6
puts 39:14

\mathbf{Q}
qualities 23:5
quality 5:20 $6: 1$
$7: 15,20,218: 1$
$14: 1 \quad 19: 622: 12$

30:5,8,14 34:10
34:16 38:3,10,12
38:18 39:3,9,17
58:4,10,11 63:13
72:6,9,11,12,17
72:22 73:12,20
74:3,6 77:1
quality-based 64:9
quantities 23:4
quarter 74:3
question 7:10 8:15 10:21 12:3 24:17 28:17 35:14 36:20 37:17 48:6 54:3 55:22
questioning 76:12
questions 40:18
71:5 72:4 74:15 79:9,17
quick 75:2
quite 6:11 18:20 37:17 59:13
$\bar{c} \mathbf{R}$
R 1:18
rainy 3:17
raise 10:22 12:3
41:9,16
raised 41:13 64:11
Randolph 1:19
3:10

Randy 3:21
reach 14:3 19:7 28:22 69:1,2
75:20 76:1 77:2,9
reaches 69:5
read 6:12,13 21:7
32:9 68:3 69:7
reading 21:4 38:19
real 29:11 66:2
really 6:15 8:15,22
15:10 37:21 38:15
49:6 53:6,11 54:4
63:4 64:13 65:9
66:1 68:1 73:5
78:13
reason 33:13 59:22 68:9
rebuttal 4:8 5:12 60:7
recall 55:8
record 26:10 31:19
45:15 59:5 75:11
76:18,19
recording 3:14
red $32: 7$
refer 37:18,19
referenced 18:21
references 26:10
reflected 58:5
reflects 76:19
regard 6:1 7:7 8:6 10:15 14:6 42:9
regarding 71:5
region 2:8,11 5:3
42:8 44:13,16
45:10,12 46:22
52:8 54:22 57:8
57:16 60:12 78:14 78:18,22 79:2
Regional 2:11
regular 46:14
regulation 6:18 49:11 52:5 53:19
regulations 11:9,12
11:14 12:7 49:18 53:16
relatively 7:6

Neal R. Gross and Co., Inc.
(202) 234-4433

relevant 7:4	right 3:21 21:9	season 15:12,13,17	showed 16:11	sources 17:3 28:20
rely $13: 1$	22:8 23:19 26:1	16:14,14 18:9	showing 16:8 35:15	34:1 61:22 62:2
relying 19:3	32:20,22 36:21,22	19:19,21,22 20:4	shown 13:22 19:5	62:17 63:20,22
remaining 65:17	56:17 67:21	25:12 28:5 43:18	76:22	speak 30:13
remains 50:14	rightly 20:16	58:19 60:1 66:17	shows 46:8	speaks 41:7
remand 9:18,18	rise 3:3 34:21	67:17,22	side 4:12	specific 15:17
remedies 41:14,18	river 6:1,3 7:4 14:9	seasonal 15:9,10,11	signals 27:4	specifically 5:22
removal 63:7,10	14:19 16:20 17:5	15:12,15 16:13	significance 20:21	43:16 70:13
70:15	20:11,14,15,18	17:6,9 19:15 20:1	34:2	specify 16:12
repeat 43:22	21:1 22:6,18 23:3	67:15,20,22	similar 25:17	speculate 29:4
replied 30:6	23:13,14 24:21	seasonally 14 :	simple 6:12 10:4	speculation 28:17
reply 10:22 26:18	25:8 29:1 34:9,17	seated 3:15	11:19 61:18	speed 77:11,13
represent 5:15,18	38:13 39:5 43:1	Seattle 2:13	simpler 6:14	speeds 77:19
representing 4:14	43:18,19 44:6	second 49:9 68:13	simply 64:18	spoke 56:20
17:20	50:3,15 57:12,13	78:18	situation 49:21	spreadsheet 32:15
require 8:22 11:9	58:20 59:3,9,20	section 53:12 60:9	54:18 65:13	square 11:8 33:14
required 11:5 36:8	60:10 62:8,9,17	73:1 77:9	slowed 26:20	46:14
36:11 44:20 47:10	63:21 66:8,19,19	securing 39:4	slug 66:21	squares 14:21
requirement 31:5	68:8,16 69:1,2,3	see 12:21 26:10	small 32:10 33:22	staffing 25:1
requirements	69:10,12 73:6,7	30:7 32:21,22	34:12	standard 7:15 8:2
49:13 54:6 60:17	73:10,10 76:4	33:1,10 35:9,11	snake 6:1,3 7:3	22:11 30:5,9,14
61:7	rivers 6:4,6	48:3 74:10	14:19 21:1 22:6	38:10,12 39:9
requires 27:20	room 1:12 21:5	seek 9:17,17	24:1,21 25:13	58:4,11 72:22
36:21 37:1 45:11	rub 9:3	seeking 37:4 40:11	34:9,17 42:22	73:11,12,12 74:3
49:11 54:9 60:17	run 32:3	segment 23:12,14	43:1,9,11,15,18	74:9
61:3	S	75:10	43:19 44:4,6 50:3	standards 7:20
research 45:8	\mathbf{S}	semantics 39:21	50:15 57:11,12,13	14:2 19:6 22:13
reserve 4:75:11	sample 37:8,12	sense 55:17 65:1	58:20 59:2,3,9,20	34:10,16 38:3,10
40:14	samples 65:4	sent 26:11 37:3	60:10 62:6,8,9,17	38:18 39:3,10,17
resolved 6:8 8:12	sampling 36:21	sentence 19:14 20:6	63:21 64:1 66:7	58:11,13 72:7,9
78:22	37:1,4	70:19	68:15,16,22 69:1	72:11,12,17 73:20
respond 78:5,6	satisfactory 10:3	sentences 21:10,12	69:2,3 70:12 73:1	73:21 74:6 77:1,6
response 6:13	satisfies 30:13	separate $39: 8$	73:776:16 77:9	standing 30:9
31:22 45:8 70:11	saw 8:11 10:22	September 14:18	Snake/Succor	start 5:13 24:18
74:16,18 79:18,20	26:18	15:21 16:2 17:8	13:20 23:9	Starting 4:11
rest 79:11	saying 19:19,21	68:1	solution 10:19	state 5:19 6:4,6
restricted 29:9	21:11,13,22 24:18	session 3:6	somewhat 11:21	23:15 25:22 26:6
result 7:19 9:14	26:13 56:9	set 9:21,22 18:17	sorry 7:21 8:6	26:12,13 27:15,16
10:14 14:1 19:5	says 14:18,20 $15: 7$	23:16 26:1 27:18	21:15 27:13 31:16	28:17 29:17 30:10
31:14 34:14 58:20	15:9 17:120:7	28:9 64:19 73:17	36:19 43:21 75:20	30:12,16 45:2
76:22	31:1 49:18 51:16	sets 26:20	sort 43:9 53:3	50:16 57:3 70:22
resulting 58:19	52:5 55:14 63:1	setting 71:1	63:10,14 65:12	$71: 18,18,1972: 18$
results 8:1 53:2	68:22 69:20	sheet $64: 15$	79:4	$73: 3,1377: 18$
review 49:16 72:7,8	scenario 20:9	shoot 20:12	sorts 29:5,8	78:3
reviewed 8:10	scenarios 28:12	short-term 66:22	sought 16:20	state's 7:14 58:3
78:16	science 25:3	show 31:21 52:9	sounds 69:15	$72: 21 \quad 74: 2$
rewrite 29:18		59:6	source 62:14 64:2	state-based 5:17

Neal R. Gross and Co., Inc.
(202) 234-4433

stated 57:2,14 66:8	sufficiency 30:4	70:17 71:2 72:20	title 14:15	Todd 2:4 4:19
70:13	sufficient $22: 11$	73:7,8,14,17 74:7	TMDL 6:17 7:5,13	top 59:19
statement 44:5	suggest 68:3	75:5,6,14,17,18	7:17,18,22 8:16	total 7:2 14:5,8,16
46:15 48:22	suggested 21:6	75:20,22 76:3,14	8:19 9:1,5,13,15	22:13 23:17 25:5
statements 44:17	suggesting 16:11	76:15 77:8,10	12:13,15 13:20,22	29:2 52:3 53:13
44:19 45:5 47:1	24:13	targets 16:20 25:22	14:12 15:18 18:17	55:12 62:13 69:4
48:15 60:19,21	Suite 2:12	28:14 43:17 75:21	18:21 20:16 21:3	72:22 77:22 78:3
63:3	summer 60:2	76:21	21:15,18,19,21	tough 79:3
States 3:5	support 4:20 14:2	technical 10:12	22:4,17,19 23:7,8	toxics 64:10
stating 70:15	19:6 64:9 69:8,17	64:8 67:2	23:9,10,20,21,22	TPA 32:18
statute 6:18 51:15	77:1	tell 23:1 34:6 35:17	25:10 26:1,7,9,15	traffic 77:17
52:4 55:12	supported 26:9,14	37:2 59:15	26:19 27:17,18,20	translate 21:21
stayed 44:21	26:17,19 27:17,18	temperature 66:18	28:14,15 29:12,14	translated 45:5
Stein 1:21 3:11,22	75:10	terms 65:21	29:17,18,21,22	54:16 60:14
10:20 11:7 12:1	supposed 73:9	thank 5:9 8:9 13:16	30:5,14 31:1,5,10	translating 51:11
20:19 21:16 24:8	sure 4:20 11:3	13:17 16:6,9	31:16 33:14,18	traveled 3:18
24:12 26:16 27:1	38:16 40:8 57:19	17:17 19:4 27:13	34:11,14,15,19	treatment 1:8 3:7
27:15 28:16 29:11	surprise 55:20	40:6,13,16,17	35:1,4,6,7,12,18	62:12 63:6 70:16
31:4 33:19 34:18		74:19,20 75:1	35:21 36:3,5	70:20
37:16 38:5,14	T	78:14 79:6,14,21	37:20 39:19 40:9	tremendous 6:2
39:7,13 40:6 54:1	table 4:17 14:15,15	79:21 80:3	40:11 43:7,9,11	trouble 10:2 34:5
55:7 61:6 67:19	17:1,19 46:22	thing 7:17 30:6	43:15,20 44:2,4,7	true 41:22 43:10
68:18 72:3,4	55:22 62:20	36:1 45:10	44:7,18 45:7,20	48:16 55:10 76:7
74:17 79:19	take 16:4 27:11	things 60:12	45:22 47:2,6,6	trump 28:3
step 54:2	56:3 65:1,8 80:2	think 7:7,16 10:15	49:5,6,13,14,20	trumps 27:21 28:1
strategy 17:2	takes 65:5	30:15 34:20 35:17	49:22 50:2,3,4,16	truncated 8:6
Street 2:5	talk 31:8 51:17	45:21 49:4,17	51:6,13 52:10,12	Try 41:6
stretch 22:5,18,21	62:3,18,19 67:19	51:9 52:16 53:3	53:12 54:6 55:21	trying 6:20 10:1
25:14 29:7,10	talked 37:17	53:15 54:8,10,13	56:7,9,13 57:1,11	12:2 20:20 22:14
34:17 38:4,13	talking 6:15 7:1	55:21 56:19 58:7	57:12,13 58:6	25:7 29:14,20,22
39:4 76:3,16	talks 41:16 62:10	58:9 64:20 67:5,8	59:9 60:20 61:3,8	35:17 51:6
stretches 23:3	target 7:18 9:15	68:4,9 71:4,5,12	62:3,7,8,10,21	Tucci 2:4 4:19
strictly 27:11	10:6 13:21,22	third 19:14	64:1 66:8 67:21	turn 3:13 11:16
Strike 14:20	14:7,8 15:9,16	thought 8:13 18:7	68:22 70:8,13,13	39:8 53:15 59:9
strikes 37:18	17:8,13,15,21	18:11 77:11	70:19 71:3,5,8,9	turned 44:6,17
stringent 10:13	18:4 19:5,15,17	threshold 15:21	71:14,16,16,17,19	turning 66:11
struck 6:13	19:22 20:2,13	tiered 40:5	71:20 72:5,8	turns 66:5
submittal 24:20	23:17 25:17 28:1	time 14:10 15:19	73:15,22 74:4	two 23:12 33:22
submitted 41:10	28:3,21 30:8	16:4 20:3 24:7	75:16,19,22 76:21	43:14 63:3 69:5
subsequent 24:15	34:10,15 36:6,7	27:12 32:3 33:20	77:8 78:8,11,11	73:10 74:875:15
47:5	36:10 37:18,19,21	40:15,16 55:7	TMDLs 24:1,6,6,21	typically $27: 3$
Succor 23:9,22	$37: 2138: 1,5,7,11$ $38: 1939: 6,17$	63:8 66:20 70:14	25:19 33:22 35:8	
25:17 29:10 35:12	38:19 39:6,17	71:9,17 74:10	35:11 40:3 43:14	$\frac{\mathrm{U}}{\text { US } 1.22 .10}$
43:1 57:11 59:2	42:19,21 45:22	78:19,21	44:11 50:15 55:12	
69:1 $75: 9,21$ $76: 16,21$	46:2 58:5 59:1	times 42:15,16 48:12 61:14,16	68:5 75:15,21 $77: 478: 9$	39:10
suddenly 66:22	68:7,15 69:5,8,13	timing 25:1	Today 4:4	undergo 70:18

Neal R. Gross and Co., Inc.
(202) 234-4433
underlined 19:15
underlying 8:14
12:5 40:11 57:6
understand 10:1
22:6 56:6,18
69:10
understanding 10:2 12:13 22:10 22:10 25:3 34:5
unfortunately 6:5 13:8 31:12
unique 8:19 23:20 38:12
United 3:4
upgrade 30:20 31:2 35:22 36:11 47:3
upgraded 36:8
upgrades 44:20 48:20
uphold 29:22
upstream 22:21
24:1 25:19 28:22
use 11:17 29:18 35:13 61:15 63:2 64:8 68:5 69:14 77:16
uses 9:3 14:2 17:14 19:7 39:4 77:2
usurp 78:10
-
vague 63:14
value $38: 2$ 63:1
variation 17:6
variety $5: 19$
various 44:17 77:6
verify $37: 5$
versus 34:4
violating 46:13
violation 8:1 33:11 36:16
violations 9:14
virtually $78: 17$
$\frac{\mathbf{W}}{\text { want 34:9,10 37:11 }}$ 41:9 53:5 74:12

75:4
wanted $60: 16,16$
76:12
Washington 1:2,14
2:13,18 3:17,18
wasn't 43:2 44:20 46:3
waste 8:16 9:1 10:7 12:15 22:1,5 27:19 28:5,12 33:4,12 36:6,9 40:4 42:12,13,18 42:21 43:3,7,12 44:8,11,15 45:6 46:4 47:17,19 48:13 49:20,22
50:4,12,20 51:6
51:11 52:7,14
53:21 54:16 55:2
55:3,4,15 56:2,11
56:20 57:4,7,9,14
60:14,18 61:1,11
61:16 65:21 66:6
66:9 69:22 70:2
71:1 73:22
wastewater 1:7 3:7
62:12 63:6 70:16 70:20
water 2:17 5:20 6:1 7:15,19,20 8:1 14:1 19:5 22:12 28:19,22 30:5,7 30:14 34:9,16 38:3,10,12,18 39:3,8,16 46:2 53:1,12 58:4,10 58:11 62:1 63:13 64:9 66:3 72:6,9 72:11,12,17,22 73:12,20 74:5,8 76:22
watershed 43:1,2 46:5 58:21 59:3,4 68:17 73:8
way 8:20 $10: 10$ 21:8 26:20 27:17 34:13 42:14 56:16

68:3 78:8
we'll 4:4
we're 6:15,17 36:17
40:8 51:10,10
58:12 75:3,5
Weber 2:9 5:2,2
40:19,20 41:5,8
41:22 42:5,8
43:10 44:1,4
45:21 46:19 48:5
48:9 49:4,17
50:22 51:3,19
52:1,16 53:10
54:12 55:10 56:17
57:21 58:7 59:8
59:18 60:11 61:9
62:6 63:15,18
64:6,20 66:5 67:2
67:12 68:4,20
69:6,18 70:10
71:4,15,22 72:10
73:2,19 74:4,13 74:20
Weber's 77:16
Wednesday 1:11
week 65:9
weekly 8:18 9:4,10
9:21,22 10:9,11
10:16 11:10,16,20
12:9 36:21 37:1
45:12,17 51:17
61:4 64:17,22 65:8
Welcome 3:17 4:22 5:6
went 27:7 47:19
55:1,3 57:9 61:10
66:6 69:22 70:2
71:20 73:3,13
Weren't 24:8
who've 3:18
wishes 30:21
wonderful 12:18
16:6 21:10
wondering 14:21 15:5
word 11:4 30:12

68:6 69:14	36:13,14 37:12
words 12:7 17:11	41:21 42:1,1,2,3,9
17:14 21:4	46:13 64:5,6,19
work 5:19,21 13:12	64:21 65:19,22
43:19 79:3,4	11:00 1:16
worked 78:15	11:01 3:2
working 13:3 40:3	1152 1:12
wouldn't 12:1,4	12:12 80:5
21:1 41:21 42:1,3	1200 2:12,17
47:2 66:22	1201 1:13
write 57:3 73:18	122.44D1 52:5
writer 21:20 28:11	53:18 54:15 60:17
47:14 49:15,19,21	122.45D 45:11 61:3
52:6 54:14 58:2	$133: 9$
73:17,19	13-10 1:8
writers 64:8	$15743: 15$ 44:1,3
written 29:21 36:22	1641:20 42:164:5
67:21	64:6
wrongly 20:16	16.5 9:10
X	$16168: 21$
	164 14:22 15:8
Y	
year 24:9 62:16 years $78 \cdot 15$	16:15
yellow 27:3	2
Z	20 65:19
zero 65:16	2004 24:13
0	2006 46:9,10
0.07 42:19,21 68:14	2013 26:11
002042 3:8	2014 1:11
$0714: 4,9,20$ 17:4	202 2:19
17:10 18:5 19:8	20460 2:18
23:16 25:4 30:8	$2062: 13,14$
30:11 39:5 41:11	208 2:6,7
46:1,2 58:10,22	258 59:12
69:4,12 70:4,17	280 62:10
71:2 72:20 73:2	29 65:17
74:6,7 75:3 77:3	3
1	3 46:11 48:7,11,19
1/7 9:22	62:4
10 2:8,11 3:9 5:3	3.531:11 47:7
16:778:15 79:2	61:12 62:13,22
11 9:8,21 10:1,5,15	63:9 ${ }^{651: 11} 6$
30:18 33:3,11	30 1:11 65:18

36.1.2, 12.1 .12
4.:21 64.1,1,2,3,9

46:13 64:5,6,19
64:21 65:19,22
11:00 1:16
11:01 3:2
1152 1:12
12:12 80:5
1200 2:12,17
1201 1:13
122.44D1 52:5

53:18 54:15 60:17
122.45D 45:11 61:3
$133: 9$
13-10 1:8
$15743: 15$ 44:1,3
16 41:20 42:1 64:5
64:6
16.5 9:10

161 68:21
164 14:22 15:8
16:12 18:22 76:20
175 14:12 15:22
16:15

Neal R. Gross and Co., Inc.
(202) 234-4433

Neal R. Gross and Co., Inc.
(202) 234-4433

```
This is to certify that the foregoing transcript
In the matter of: City of Homedale Wastewater
                        Treatment Plant
Before: EPA
Date: 04-30-2014
Place: Washington, D.C.
was duly recorded and accurately transcribed under my direction; further, that said transcript is a true and accurate record of the proceedings.
```


